phyluce documentation
Release 1.7.0

Brant C. Faircloth

Mar 04, 2021

Contents:

1 Contributions

2 Issues

3 Guide

3.1 Purpose

3.1.1
3.1.2
3.1.3

321
322
323

3.3.1
332
333
334

3.4.1
342
343
344
345

4 Project info
4.1 Citing
4.1.1
4.1.2

4.2 License

421
422

4.3 Attributions
Maintainer/Author
Contributed to the code
Developed the UCE approach
Contributed to the UCE approach

4.3.1
432
433
434

How do I report bugs?
3.2 Installation
Install Process
phyluce configuration
Other useful tools
3.3 Phyluce Tutorials
Tutorial I: UCE Phylogenomics
Tutorial II: Phasing UCE data

Tutorial III: Harvesting UCE Loci From Genomes
Tutorial IV: Identifying UCE Loci and Designing Baits To Target Them
3.4 Phyluce in Daily Use
Quality Control

UCE Processing for Phylogenomics

List of Phyluce Programs

44 Funding L e e e 133
4.4.1 Primary SOUICES v v v v v e e e e e e e e e e e e e e e e e e 133
442 Secondary Sources
4.5 Acknowledgements

Bibliography 135

phyluce documentation, Release 1.7.0

Release v1.7.0
Author Brant C. Faircloth
Date 04 March 2021 20:11 UTC (+0000)
Copyright This documentation is available under a Creative Commons (CC-BY) license.

phyluce (phy-loo-chee) is a software package that was initially developed for analyzing data collected from ultracon-
served elements in organismal genomes (see References and http://ultraconserved.org for additional information).

The package includes a number of tools spanning:
* the assembly of raw read data to contigs
* the separation of UCE loci from assembled contigs

* parallel alignment generation, alignment trimming, and alignment data summary methods in preparation for
analysis

* SNP calling and contig correction using raw-read data

As it stands, the phyluce package is useful for analyzing both data collected from UCE loci and also data collection
from other types of loci for phylogenomic studies at the species, population, and individual levels.

Contents: 1

http://creativecommons.org/licenses/by/4.0/
https://github.com/faircloth-lab/phyluce
http://ultraconserved.org
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

2 Contents:

CHAPTER 1

Contributions

phyluce is open-source (see License) and we welcome contributions from anyone who is interested. Please make a
pull request on github.

https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

4 Chapter 1. Contributions

CHAPTER 2

Issues

The issue tracker for phyluce is available on github. If you have an issue, please ensure that you are experiencing this
issue on a supported OS (see Installation) using the conda installation of phyluce. When submitting issues, please
include a test case demonstrating the issue and indicate which operating system and phyluce version you are using.

https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce/issues
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

6 Chapter 2. Issues

CHAPTER 3

Guide

3.1 Purpose

Phylogenomics offers the possibility of helping to resolve the Tree of Life. To do this, we often need either very
cheap sources of organismal genome data or decent methods of subsetting larger genomes (e.g., vertebrates; 1 Gbp)
such that we can collect data from across the genome in an efficient and economical fashion, find the regions of each
genome that are shared among organisms, and attempt to infer the evolutionary history of the organisms in which
we’re interested using the data we collect.

Genome reduction techniques offer one way to collect these types of data from both small- and large-genome or-
ganisms. These “reduction” techniques include various flavors of amplicon sequencing, RAD-seq (Restriction site
Associated DNA markers), RNA-seq (transcriptome sequencing), and sequence capture methods.

phyluce is a software package for working with data generated from sequence capture of UCE (ultra-conserved
element) loci, as first published in [BCF2012]. Specifically, phyluce is a suite of programs to:

* assemble raw sequence reads from Illumina platforms into contigs
¢ determine which contigs represent UCE loci

« filter potentially paralagous UCE loci

« generate different sets of UCE loci across taxa of interest

Additionally, phyluce is capable of the following tasks, which are generally suited to any number of phylogenomic
analyses:

* produce large-scale alignments of these loci in parallel
* manipulate alignment data prior to further analysis

* convert alignment data between formats

* compute statistics on alignments and other data

phyluce is written to process data/individuals/samples/species in parallel, where possible, to speed execution. Par-
allelism is achieved through the use of the Python multiprocessing module, and most computations are suited to
workstation-class machines or servers (i.e., rather than clusters). Where cluster-based analyses are needed, phyluce

http://en.wikipedia.org/wiki/Phylogenomics
http://en.wikipedia.org/wiki/Tree_of_Life
http://www.ncbi.nlm.nih.gov/pubmed/18274529
http://en.wikipedia.org/wiki/Restriction_site_associated_DNA_markers
http://en.wikipedia.org/wiki/RNA-Seq
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
http://www.python.org
http://docs.python.org/2/library/multiprocessing.html
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

will produce the necessary outputs for input to the cluster/program that you are running so that you can setup the run
according to your cluster design, job scheduling system, etc. Clusters are simply too heterogenous to do a good job at
this part of the analytical workflow.

3.1.1 Longer-term goals (v2.0.0+ and beyond)

We are also working towards adding:
* simplify the CLI (command-line interface) of phyluce

¢ add additioanl work f1lows for multi-step analyses

3.1.2 Who wrote this?

This documentation was written primarily by Brant Faircloth (http://faircloth-lab.org). Brant is also responsible for
the development of most of the phyluce code. Bugs within the code are usually his.

You can find additional authors and contributors in the Attributions section.

3.1.3 How do | report bugs?

To report a bug, please post an issue to https://github.com/faircloth-lab/phyluce/issues. Please also ensure that you
are using one of the “supported” operating systems and a supported installation method. Please see the Installation
section for more details.

3.2 Installation

phyluce uses a number of tools that allow it to assemble data, search for UCE loci, align results reads, manipulate
alignments, prepare alignments for analysis, etc. To accomplish these goals, phyluce uses wrappers around a number of
programs that do each of these tasks (sometimes phyluce can use several different programs that accomplish the same
task in different ways). As a result, the dependency chain (the programs that phyluce requires to run) is reasonably
complex.

In the current versions (> 1.7.x), and we very strongly suggest that users install phyluce using the miniconda Python
distribution.

Attention: We do not support installing phyluce through means other than the conda installer. This means that
we do not test phyluce against any binaries, other than those we build and distribute through conda. Although you
can configure phyluce to use binaries of different provenance, this is not officially supported.

Note: We build and test the binaries available through conda using 64-bit operating systems that include:
* MacOS 10.15
» Ubuntu 20.04 LTS

phyluce is also available for use as a docker image. Underneath the hood the docker image runs Ubuntu 20.04 LTS
and installs phyluce and related packages using conda.

8 Chapter 3. Guide

http://en.wikipedia.org/wiki/Command-line_interface
https://github.com/faircloth-lab/phyluce
http://faircloth-lab.org
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce/issues
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
http://en.wikipedia.org/wiki/Dependency_hell
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
https://conda.io/miniconda.html
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce
https://www.docker.com
https://www.docker.com
https://github.com/faircloth-lab/phyluce
http://docs.continuum.io/conda/

phyluce documentation, Release 1.7.0

3.2.1 Install Process

Attention: We do not support phyluce on Windows, although you technically should be able to install phyluce
on Windows using the Windows Subsystem for Linux (WSL) and installing Ubuntu 20.04 LTS from the Windows
Store. You should also be able to use the docker image.

Using Conda

Note: We build and test the binaries available through conda using 64-bit operating systems that include the following.
We will officially support MacOS 10.16 when the github build system offers this platform for automated tests.

e MacOS 10.15
e Ubuntu 20.04 LTS

The installation process is a 2-step process. You need to:
1. Install miniconda
2. Install phyluce

Installing phyluce will install all of the required binaries, libraries, and Python dependencies that you need to run the
program.

Install miniconda

First, you need to install miniconda. Follow the instructions for your platform that are available from conda.io. After
you have run the install process be sure that you:

1. close and re-open your terminal window

2. run conda list which should produce output

Install phyluce

Current practice with conda is to keep all environments separate and not to use the base environment as a “default” en-
vironment. So, we will be installing phyluce into an environment named phyluce-vX.X where the X . x represents
the version you choose.

1. Go to the phyluce github release page
2. Download the appropriate * . ym1 file for the phyluce version you want and the operating system you are using

3. Install that into an environment corresponding to the phyluce version, e.g. phyluce-1.7 following the in-
structions on the phyluce release page

This will create an environment named phyluce—-X. x, then download and install everything you need to run phyluce
into this phyluce—-X. x conda environment.

To use your new phyluce environment, you must run (replace X . x with the correct version):

conda activate phyluce-X.x

To stop using this phyluce environment, you must run:

3.2. Installation 9

https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
https://www.docker.com
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce
https://conda.io/miniconda.html
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
http://www.python.org
https://conda.io/miniconda.html
https://conda.io/docs/user-guide/install/index.html
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce/releases
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

conda deactivate

What conda installs

When you install phyluce, it specifies a number of dependencies that it needs to run. If you would like to know
everything that conda has installed, you can open up the * . yml you downloaded (it is simply a text file) and take a
look at the contents.

From within the conda environment, you can also run

conda activate phyluce-X.x
conda list

Added benefits

An added benefit of using conda is that you can also run all of the 3rd-party binaries without worrying about setting
the correct $PATH, etc.

For example, phyluce requires MUSCLE for installation, and MUSCLE was installed by conda as a dependency of
phyluce. Because conda puts all of these binaries in our $SPATH when the environment is activateed, we can also just
run MUSCLE on the command-line, with, e.g.,:

$ muscle -version

MUSCLE v3.8.1551 by Robert C. Edgar

Using Docker
We also provide phyluce as a docker image, which means you can run the phyluce installation anywhere that you can
run docker. The docker image is built on Ubuntu 20.04 LTS using conda. To pull the docker image:

1. Go to the phyluce github release page

2. Find the phyluce release you want (usually the most recent)

3. Run the docker pull command listed

Although using docker is beyond the scope of this guide, you can run phyluce within a docker using a command
similar to the following, e.g.:

docker run fairclothlab/phyluce:<tag> phyluce <phyluce_program_name>

Where <tag> corresponds to the version of phyluce you are using. When you run this, all commands are run in the
default directory /work and the user within the container is named phyluce.

You will very likely want to mount a local directory (on your computer) to this /work directory in the docker container
and make yourself the owner of the result files. If you are working in /home/you/phyluce on your computer, you
can accomplish all of by running phyluce like:

docker run \
-v /home/you/phyluce:/data \
——user $(id -u):$(id -g) \
fairclothlab/phyluce:1.7.0 \
phyluce_assembly_assemblo_spades \

(continues on next page)

10 Chapter 3. Guide

http://docs.continuum.io/conda/
http://docs.continuum.io/conda/
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
https://www.docker.com
https://github.com/faircloth-lab/phyluce
https://www.docker.com
https://www.docker.com
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce/releases
https://github.com/faircloth-lab/phyluce
https://www.docker.com
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

(continued from previous page)

——output spades-test \
——config assembly.conf \
——cores 12

The —v /home/you/phyluce:/data maps your directory (/home/you/phyluce) onto the container work-
ing directory (/work), the ——user $(id -u) :$(id —g) makes the owner of the files in the container your
user and group, the fairclothlab/phyluce:1.7.0 is the name of the image to use, and the rest are standard
phyluce command.

Finally, you may want to run many commands in the docker container (e.g. as in an entire analysis run). This can be
accomplished by starting a bash__ shell in the container, and working from within the container’s bash prompt, as in:

docker run \
-v /home/you/phyluce:/data \
——user $(id -u):$(id -g) \
-1 -t fairclothlab/phyluce:1.7.0 \
/bin/bash

this drops you into the shell, where you can run commands, e.g.:
@d51laa2f2d565:/data$

Using Singularity

If you are using Singularity, you should be able to pull the Docker image, and convert it for use, although this is not
tested and is not supported. For example:

singularity pull docker://fairclothlab/phyluce:1.7.0

If that does not work, you could also use the phyluce Dockerfile to create a Singularity definition file, and build a
Singularity image.

3.2.2 phyluce configuration

As of v1.5.x, phyluce uses a configuration file to keep track of paths to relevant binaries, as well as some configuration
information. This file is located at SCONDA_PREFIX/phyluce/config. Although you can edit this file directly,
you can also create a user-specific configuration file at ~/.phyluce.conf (note the preceding dot), which will override
the default values with different paths.

So, if you need to use a slightly different binary or you want to experiment with new binaries (e.g. for assembly), then
you can change the paths in this file rather than deal with hard-coded paths.

Attention: This WILL NOT work for the docker image by default. You also do NOT need to to anything with
this file - $PATHs should automatically resolve.

Warning: Changing the $PATHs in the config file can break things pretty substantially, so please use with caution.
If you are making changes, edit the copy at ~/ .phyluce. conf) rather than the default copy.

The format of the config file as of v1.7 looks similar to the following:

3.2. Installation 11

https://www.docker.com
https://sylabs.io
https://www.docker.com
https://raw.githubusercontent.com/faircloth-lab/phyluce/main/docker/Dockerfile
https://sylabs.io
https://sylabs.io
https://github.com/faircloth-lab/phyluce
https://www.docker.com

phyluce documentation, Release 1.7.0

[binaries]
abyss:SCONDA/bin/ABYSS
abyss—pe:SCONDA/bin/abyss—-pe
bcftools: SCONDA/bin/becftools
bedtools:SCONDA/bin/bedtools
bwa:$SCONDA/bin/bwa
gblocks:$CONDA/bin/Gblocks
lastz:SCONDA/bin/lastz
mafft:SCONDA/bin/mafft
muscle: SCONDA/bin/muscle
pilon:SCONDA/bin/pilon
raxml-ng:SCONDA/bin/raxml-ng
samtools:SCONDA/bin/samtools
seqtk:SCONDA/bin/seqtk
spades: SCONDA/bin/spades.py
trimal:SCONDA/bin/trimal
velvetg: SCONDA/bin/velvetg
velveth:SCONDA/bin/velveth
snakemake: SCONDA/bin/Snakemake

[workflows]

mapping: SWORKFLOWS/mapping/Snakefile

correction: SWORKFLOWS/contig—correction/Snakefile
phasing: SWORKFLOWS/phasing/Snakefile

[headers]

trinity:comp\d+_c\d+_seqg\d+|c\d+_g\d+_i\d+|TR\d+\ |c\d+_g\d+_i\d+|TRINITY_DN\d+_c\d+_
—g\d+_i\d+

velvet :node_\d+

abyss:node_\d+

idba:contig-\d+_\d+

spades :NODE_\d+_length_\d+_cov_\d+.\d+

[spades]
max_memory:4
cov_cutoff:5

3.2.3 Other useful tools

You will need to be familiar with the command-line/terminal, and it helps to have a decent text editor for your platform.
Here are some suggestions that are free:

e yscode

* atom

12 Chapter 3. Guide

https://code.visualstudio.com/
https://atom.io/

phyluce documentation, Release 1.7.0

3.3 Phyluce Tutorials

3.3.1 Tutorial I: UCE Phylogenomics

In the following example, we are going to process raw read data from UCE enrichments performed against several
divergent taxa so that you can get a feel for how a typical analysis goes. For more general analysis notes, see the UCE
Processing for Phylogenomics chapter. That said, this is a good place to start.

The taxa we are working with will be:
¢ Mus musculus (PE100)
¢ Anolis carolinensis (PE100)
* Alligator mississippiensis (PE150)
» Gallus gallus (PE250)

Download the data

You can download the data from figshare (http://dx.doi.org/10.6084/m9.figshare.1284521). If you want to use the
command line, you can use something like:

create a project directory
mkdir uce-tutorial

change to that directory
cd uce-tutorial

download the data into a file names fastqg.zip
wget -0 fastqg.zip https://ndownloader.figshare.com/articles/1284521/versions/2

make a directory to hold the data
mkdir raw-fastqg

move the zip file into that directory
mv fastg.zip raw-fastqg

move into the directory we just created
cd raw—-fastqg

unzip the fastqg data
unzip fastqg.zip

delete the zip file
rm fastqg.zip

you should see 6 files in this directory now

1ls -1

—rw-r——r——. 1 bcf users 4.4M Feb 22 14:14 Alligator_mississippiensis_GGAGCTATGG_L001_
—R1_001.fastg.gz

—-rw-r——r——. 1 bcf users 4.3M Feb 22 14:14 Alligator_mississippiensis_GGAGCTATGG_LO001_
—R2_001.fastqg.gz

—-rw—r——r——. 1 bcf users 4.9M Feb 22 14:14 Anolis_carolinensis_GGCGAAGGTT_LOO1_R1_001.
—~fastg.gz

—-rw—r——r——. 1 bcf users 4.9M Feb 22 14:15 Anolis_carolinensis_GGCGAAGGTT_LO001_R2_001.

fa ‘rqg
(continues on next page)

3.3. Phyluce Tutorials 13

http://dx.doi.org/10.6084/m9.figshare.1284521

phyluce documentation, Release 1.7.0

(continued from previous page)

-rw-r——r——. 1 bcf users 7.6M Feb 22 14:15 Gallus_gallus_TTCTCCTTCA_LOO1_R1_001.fastqg.
—~JzZ

—-rw-r——r——. 1 bcf users 8.4M Feb 22 14:15 Gallus_gallus_TTCTCCTTCA_LOO1_R2_001.fastqg.
—gz

—-rw-r——r—-—. 1 bcf users 4.9M Feb 22 14:16 Mus_musculus_CTACAACGGC_LO01_R1_001.fastqg.gz
-rw-r——r——. 1 bcf users 4.9M Feb 22 14:16 Mus_musculus_CTACAACGGC_LO01_R2_001.fastqg.gz

Alternatively, if you think of the filesystem as a tree-like structure, the directory in which we are working (uce-tutorial)
would look like:

uce-tutorial
+— raw—fastqg
+— Alligator_mississippiensis_GGAGCTATGG_LO001_R1_001.fastqg.gz
+— Alligator_mississippiensis_GGAGCTATGG_LO001_R2_001.fastqg.gz
+— Anolis_carolinensis_GGCGAAGGTT_LO01_R1_001l.fastqg.gz
+— Anolis_carolinensis_GGCGAAGGTT_LO01_R2_001.fastqg.gz
+— Gallus_gallus_TTCTCCTTCA_LOO1_R1_001l.fastqg.gz
+— Gallus_gallus_TTCTCCTTCA_LOO1_R2_001l.fastqg.gz
+— Mus_musculus_CTACAACGGC_LO001_R1_001.fastg.gz
+— Mus_musculus_CTACAACGGC_LO001_R2_001.fastg.gz

If you do not want to use the command line, you can download the data using the figshare interface or by clicking:

http://downloads.figshare.com/article/public/1284521

Count the read data

Usually, we want a count of the actual number of reads in a given sequence file for a given species. We can do this
several ways, but here, we’ll use tools from unix, because they are fast. The next line of code will count the lines
in each R1 file (which should be equal to the reads in the R2 file) and divide that number by 4 to get the number of
sequence reads.

for i in »_R1_x.fastgq.gz; do echo $i; gunzip -c $i | wc -1 | awk '{print $1/4}'; done

You should see:

Alligator_mississippiensis_GGAGCTATGG_LO001_R1_001.fastg.gz
50000

Anolis_carolinensis_GGCGAAGGTT_LO01_R1_001.fastqg.gz

50000

Gallus_gallus_TTCTCCTTCA_LOO1_R1_001.fastg.gz

50000

Mus_musculus_CTACAACGGC_LO001_R1_001l.fastqg.gz

50000

Notice that all the read counts are equal - that is because these 50,000 reads in each R1 and R2 file were subsampled,
randomly, from a file of many more reads.

Clean the read data

The data you just downloaded are actual, raw, untrimmed fastq data. This means they contain adapter contamination
and low quality bases. We need to remove these - which you can do several ways. We’ll use another program that
I wrote (illumiprocessor) because it allows us to trim many different indexed adapters from individual-specific fastq
files - something that is a pain to do by hand. That said, you can certainly trim your reads however you would like.
See the illumiprocessor website for instructions on installing the program.

14 Chapter 3. Guide

http://downloads.figshare.com/article/public/1284521
https://github.com/faircloth-lab/illumiprocessor/
https://github.com/faircloth-lab/illumiprocessor/

phyluce documentation, Release 1.7.0

To use this program, we will create a configuration file that we will use to inform the program about which adapters
are in which READ1 and READ?2 files. The data we are trimming, here, are from TruSeq v3 libraries, but the indexes
are 10 nucleotides long. We will set up the trimming file with these parameters, but please see the illumiprocessor
documentation for other options.

this is the section where you list the adapters you used. the asterisk
will be replaced with the appropriate index for the sample.
[adapters]

17 :AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC*ATCTCGTATGCCGICTTCTGCTTG
15:AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT

this is the 1list of indexes we used
[tag sequences]

BFIDT-166:GGAGCTATGG
BEFIDT-016:GGCGAAGGTT
BFIDT-045:TTCTCCTTCA
BFIDT-011:CTACAACGGC

this is how each index maps to each set of reads
[tag map]
Alligator_mississippiensis_GGAGCTATGG:BFIDT-166
Anolis_carolinensis_GGCGAAGGTT:BFIDT-016
Gallus_gallus_TTCTCCTTCA:BFIDT-045
Mus_musculus_CTACAACGGC:BFIDT-011

we want to rename our read files something a bit more nice - so we will

rename Alligator _mississippiensis_GGAGCTATGG to alligator_mississippiensis
[names]

Alligator_mississippiensis_GGAGCTATGG:alligator_mississippiensis
Anolis_carolinensis_GGCGAAGGTT:anolis_carolinensis
Gallus_gallus_TTCTCCTTCA:gallus_gallus

Mus_musculus_CTACAACGGC:mus_musculus

I create this file in a directory above the one holding my reads, so the structure looks like:

uce—tutorial
+— illumiprocessor.conf
+— raw-fastqg
+— Alligator_mississippiensis_GGAGCTATGG_LO001_R1_001.fastqg.gz
+— Alligator_mississippiensis_GGAGCTATGG_LO001_R2_001l.fastqg.gz
+— Anolis_carolinensis_GGCGAAGGTT_LO01_R1_001.fastqg.gz
+— Anolis_carolinensis_GGCGAAGGTT_LO01_R2_001.fastqg.gz
+— Gallus_gallus_TTCTCCTTCA_LO0O1_R1_001.fastqg.gz
+— Gallus_gallus_TTCTCCTTCA_LOO1_R2_001.fastg.gz
+— Mus_musculus_CTACAACGGC_LO01_R1_001l.fastg.gz
+— Mus_musculus_CTACAACGGC_LO001_R2_001.fastg.gz

Now I run illumiprocessor against the data. Note that I am using 4 physical CPU cores to do this work. You need to
use the number of physical cores available on your machine, although there is not sense in using more cores than you
have taxa (in this case).

go to the directory containing our config file and data
cd uce-tutorial

run illumiprocessor

illumiprocessor \
——input raw-fastqg/ \

(continues on next page)

3.3. Phyluce Tutorials 15

https://github.com/faircloth-lab/illumiprocessor/
https://github.com/faircloth-lab/illumiprocessor/

phyluce documentation, Release 1.7.0

(continued from previous page)

——output clean-fastqg \
——config illumiprocessor.conf \
—-—cores 4

The output should look like the following:

2021-02-22 14:59:26,488 - illumiprocessor
—illumiprocesso
2021-02-22 14:59:26,489 - illumiprocessor
2021-02-22 14:59:26,489 - illumiprocessor
—conf

2021-02-22 14:59:26,489 - illumiprocessor
2021-02-22 14:59:26,489 - illumiprocessor
—bfaircloth/uce-tutorial/raw-fastqg
2021-02-22 14:59:26,490 - illumiprocessor
2021-02-22 14:59:26,490 - illumiprocessor
2021-02-22 14:59:26,490 - illumiprocessor
2021-02-22 14:59:26,490 - illumiprocessor
—bfaircloth/uce-tutorial/clean-fastqg
2021-02-22 14:59:26,490 - illumiprocessor
2021-02-22 14:59:26,491 - illumiprocessor
2021-02-22 14:59:26,491 - illumiprocessor
2021-02-22 14:59:26,491 - illumiprocessor
2021-02-22 14:59:26,491 - illumiprocessor
—conda/envs/phyluce/bin/trimmomatic
2021-02-22 14:59:26,491 - illumiprocessor
2021-02-22 14:59:26,904 - illumiprocessor
Running....

2021-02-22 14:59:36,754 - illumiprocessor

—illumiproc O ===================

QY ==============—=====

INFO

INFO
INFO

INFO
INFO

INFO
INFO
INFO
INFO

INFO
INFO
INFO
INFO
INFO

INFO
INFO

INFO

Version:
Argument

Argument
Argument

Argument
Argument
Argument
Argument

Argument
Argument
Argument
Argument
Argument

Argument
Trimming

——-min_Jlen:
--no_merge:
/scratch/

Starting,,

illumiprocessor.

/scratch/

—-—log_path: None

40
False

—-—-phred: phred33
—--rl_pattern: None
—-—r2_pattern: None

——trimmomatic: /home/bcf/

—-—verbosity: INFO
samples with Trimmomatic

Completed,,

Notice that the program has created a 1og file showing what it did, and it has also created a new directory holding
the clean data that has the name clean-fastqg (what you told it to name the directory). Within that new directory,
there are taxon-specific folder for the cleaned reads. More specifically, your directory structure should look similar to

the following (I've collapsed the list of raw-reads):

uce-tutorial
+— clean—fastqg

+— alligator_mississippiensis
+— anolis_carolinensis
+— gallus_gallus
+— mus_musculus
+— illumiprocessor.conf
+— illumiprocessor.log
+— raw—fastqg

Within each organism specific directory, there are more files and folders:

uce-tutorial

+— clean-fastqg
+— alligator_mississippiensis
+— adapters.fasta
+— raw-reads

+— split-adapter—-quality-trimmed
+— stats
+— anolis_carolinensis

(continues on next page)

16

Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

+— adapters.fasta

+— raw-reads

+— split-adapter—-quality-trimmed
+— stats

+— gallus_gallus

+— adapters.fasta

+— raw-reads

+— split-adapter—-quality-trimmed
+— stats

+— mus_musculus
+— adapters.fasta
+— raw-reads

+— split-adapter—-quality-trimmed
+— stats
+— illumiprocessor.conf

+— illumiprocessor.log
+— raw-fastqg

And, within each of those directories nested within the species-specific directory, there are additional files or links to
files:

uce—tutorial

+— clean-fastqg
+— alligator_mississippiensis
+— adapters.fasta
+— raw-reads

+— alligator_mississippiensis-READ1l.fastqg.gz —-> <PATH>

+— alligator_mississippiensis—-READ2.fastg.gz —> <PATH>
+— split-adapter—-quality-trimmed

+— alligator_mississippiensis-READ1l.fastqg.gz

+— alligator_mississippiensis—-READ2.fastqg.gz

+— alligator_mississippiensis—-READ-singleton.fastqg.gz
+— stats
+— alligator_mississippiensis-adapter—-contam.txt
+— anolis_carolinensis
+— gallus_gallus
+— mus_musculus
+— illumiprocessor.conf
+— illumiprocessor.log

+— raw-fastqg

I have collapsed the listing to show only the first taxon.

The -> in the raw-reads directory above means there are symlinks to the files. I have removed the file paths and
replaced them with <PATH> so that the figure will fit on a page.

The really important information is in the split-adapter-quality-trimmed directory - which now holds our reads that
have had adapter-contamination and low-quality bases removed. Within this split-adapter-quality-trimmed directory,
the READI and READ? files hold reads that remain in a pair (the reads are in the same consecutive order in each file).
The READ-singleton file holds READ1 reads OR READ2 reads that lost their “mate” or “paired-read” because of
trimming or removal.

Quality control

You might want to get some idea of what effect the trimming has on read counts and overall read lengths. There are
certainly other (better) tools out there to do this (like FastQC), but you can get a reasonable idea of how good your

3.3. Phyluce Tutorials 17

http://en.wikipedia.org/wiki/Symbolic_link
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

phyluce documentation, Release 1.7.0

reads are by running the following, which will output a CSV listing of read stats by sample:

move to the directory holding our cleaned reads
cd clean-fastqg/

run this script against all directories of reads

for i in x;
do

phyluce_assembly_get_fastg lengths —--input $i/split-adapter-quality-trimmed/ --
—CSsV;

done

The output you see should look like this:

All files in dir with alligator_mississippiensis-READl.fastqg.gz, 93699,8418476,89.
—84595353205476,0.059508742244529164,40,100,100.0

All files in dir with anolis_carolinensis—-READ-singleton.fastqg.gz,92184,8401336,91.
—13659637247244,0.048890234925557836,40,100,100.0

All files in dir with gallus_gallus—-READ1l.fastqg.gz,99444,21218771,213.37406982824504,
—0.16122899415574637,40,251,250.0

All files in dir with mus_musculus-READ2.fastqg.gz,89841,8165734,90.89095179261139,0.
—052266485638855914,40,100,100.

Now, we’re ready to assemble our reads.

Assemble the data

phyluce has several options for assembly - you can use velvet, abyss, or spades. For this tutorial, we are going to
use spades, because it seems to works best for most purposes, it is easy to install and run, and it works consistently.
The helper programs for the other assemblers use the same config file, so you can easily experiment with all of the
assemblers.

To run an assembly, we need to create a another configuration file. The assembly configuration file looks like the
following, assuming we want to assemble all of our data from the organisms above:

[samples]
alligator_mississippiensis:/path/to/the/uce-tutorial/clean-fastqg/alligator_
—mississippiensis/split-adapter—quality—-trimmed/
anolis_carolinensis:/path/to/the/uce-tutorial/clean-fastg/anolis_carolinensis/split-
—adapter—quality-trimmed/
gallus_gallus:/path/to/the/uce-tutorial/clean-fastq/gallus_gallus/split—-adapter—
—quality-trimmed/
mus_musculus:/scratch/bfaircloth-uce-tutorial/clean-fastqg/mus_musculus/split—-adapter—
—quality-trimmed/

You need to modify this file to use the path to the clean read data on your computer (/path/to/the/ is a place-
holder, here). You will save this into a file named assembly.conf at the top of our uce-tutorial directory:

uce-tutorial

+— assembly.conf

+— clean—-fastqg

+— illumiprocessor.conf
+— illumiprocessor.log

+— phyluce_assembly_assemblo_trinity.log
+— raw—fastqg
+— trinity-assemblies

18 Chapter 3. Guide

https://github.com/faircloth-lab/phyluce
http://www.ebi.ac.uk/~zerbino/velvet/
http://www.bcgsc.ca/platform/bioinfo/software/abyss
https://cab.spbu.ru/software/spades/
https://cab.spbu.ru/software/spades/

phyluce documentation, Release 1.7.0

If you want to change the names on the left hand side of the colon in the config file, you can do so, but the paths on
the right hand side need to point to our “clean” UCE raw reads. If you have files in multiple locations, you can use
any number of different paths on the right-hand side of the colon.

Attention: Although you can easily input new PATHs in this file, the structure of the data below the PATH you
use must be the same - meaning that the structure and naming scheme for READ1, READ2, and READ-singleton
must be the same. Or, put another way, the assembly programs for phyluce assume the data always look like the
following:

<some working folder name>
+— clean-fastqg
+— alligator_mississippiensis
+— split-adapter—-quality-trimmed
+— alligator_mississippiensis—READ1.fastqg.gz
+— alligator_mississippiensis-READ2.fastqg.gz

+— alligator_mississippiensis-READ-singleton.fastqg.gz
+— anolis_carolinensis
+— split-adapter—-quality-trimmed
+— anolis_carolinensis—-READ1.fastqg.gz
+— anolis_carolinensis—READ2.fastqg.gz
+— anolis_carolinensis—-READ-singleton.fastqg.gz

Now that we have that file created, copy it to our working directory, and run the
phyluce_assembly_assemblo_spades program:

make sure we are at the top-level of our uce tutorial directory
cd uce-tutorial

run the assembly

phyluce_assembly_assemblo_spades \
-—conf assembly.conf \
——-output spades—assemblies \
——cores 12

Warning: Note that I am using 12 physical CPU cores to do this work. You need to use the number of physical
cores available on your machine. phyluce_assembly_assemblo_spades assumes you have at least § GB
of RAM on your system, and it is better to have much more. If you use more CPU cores than you have or you
specify more RAM than you have, the job can fail.

You can adjust the RAM dedicated to the job using the ——memory option, which takes an integer value (in GB
RAM).

Note: If you are wondering, Trinity is no longer supported in phyluce

As the assembly proceeds, you should see output similar to the following:

2021-02-26 21:12:16,615 - phyluce_assembly_assemblo_spades — INFO - ===========
—Starting phyluce_assembly_assemblo_spades ===========

2021-02-26 21:12:16,615 - phyluce_assembly_assemblo_spades - INFO - Version: 1.7.0
2021-02-26 21:12:16,615 - phyluce_assembly_assemblo_spades - INFO - Commit: None
2021-02-26 21:12:16,615 - phyluce_assembly_assemblo_spades — INFO - Argument —-—
—config: /data/assembly.conf

(continues on next page)

3.3. Phyluce Tutorials 19

http://trinityrnaseq.sourceforge.net/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-02-26 21:12:16,616 — phyluce_assembly_assemblo_spades - INFO - Argument --cores:
—12
2021-02-26 21:12:16,616 - phyluce_assembly_assemblo_spades - INFO - Argument --dir:
—None
2021-02-26 21:12:16,616 - phyluce_assembly_assemblo_spades - INFO - Argument —--do_not_
—clean: False
2021-02-26 21:12:16,616 — phyluce_assembly_assemblo_spades - INFO - Argument --log_
—path: None
2021-02-26 21:12:16,616 - phyluce_assembly_assemblo_spades — INFO - Argument —-—
—memory: 8
2021-02-26 21:12:16,616 - phyluce_assembly_assemblo_spades - INFO - Argument --—
—output: /data/spades—assemblies
2021-02-26 21:12:16,616 - phyluce_assembly_assemblo_spades - INFO - Argument --—
—subfolder:
2021-02-26 21:12:16,616 - phyluce_assembly_assemblo_spades — INFO - Argument —-—
—verbosity: INFO
2021-02-26 21:12:16,617 - phyluce_assembly_assemblo_spades - INFO - Getting input,
—~filenames and creating output directories
2021-02-26 21:12:16,765 - phyluce_assembly_assemblo_spades - INFO - —————————————
—Processing alligator_mississippiensis —-———————————-
2021-02-26 21:12:16,775 - phyluce_assembly_assemblo_spades - INFO - Finding fastqg/
—fasta files
2021-02-26 21:12:16,787 phyluce_assembly_assemblo_spades - INFO - File type is fastqg
2021-02-26 21:12:16,787 - phyluce_assembly_assemblo_spades - INFO - Running SPAdes
—for PE data
2021-02-26 21:13:35,643 - phyluce_assembly_assemblo_spades - INFO - Symlinking,
—assembled contigs into /data/spades—assemblies/contigs

. [continued]...
2021-02-26 21:19:06,618 - phyluce_assembly_assemblo_spades - INFO - Symlinking,
—assembled contigs into /data/spades—assemblies/contigs
2021-02-26 21:19:06,624 - phyluce_assembly_assemblo_spades - INFO - ===========
—Completed phyluce_assembly_ assemblo_spades ==========

One the assembly is finished, have a look at the directory structure:

uce-tutorial
+— assembly.conf
+— clean-fastqg

+— illumiprocessor.conf
+— illumiprocessor.log
+— phyluce_assembly_assemblo_trinity.log
+— raw—fastqg
+— spades-assemblies
+— alligator_mississippiensis_trinity
+— contigs.fasta
+— scaffolds.fasta
+— spades.log
+— anolis_carolinensis_trinity
+— contigs.fasta
+— scaffolds.fasta
+— spades.log

+— contigs

| +— alligator_mississippiensis.contigs.fasta -> ../alligator_mississippiensis_
—trinity/contigs.fasta

| +— anolis_carolinensis.contigs.fasta -> ../anolis_carolinensis_trinity/

—contigs.fasta
| +— gallus_gallus.contigs.fasta -> ../gallus_gallus_trinity/contigs.fasta

(continues on next page)

20 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

+— mus_musculus.contigs.fasta -> ../mus_musculus_trinity/contigs.fasta
+— gallus_gallus_trinity
+— contigs.fasta

+— scaffolds.fasta
+— spades.log

+— mus_musculus_trinity
+— contigs.fasta
+— scaffolds.fasta
+— spades.log

Your species-specific assembly files are in the spades-assemblies directory nested within species-specific directories
that correspond to the name you used in the assembly.conf file (to the left of the colon).

There is also a contigs directory within this folder. The contigs directory is the important one, because it contains
symlinks to all of the species- specific contigs. This means that you can treat this single folder as if it contains all of
your assembled contigs.

Assembly QC

We can get a sense of how well the assembly worked by running the following from the top of our working directory:

run this script against all directories of reads

for i in spades-assemblies/contigs/«.fasta;
do

phyluce_assembly_get_fasta_lengths —--input $i --csv;
done

This should output something similar to the following. I’ve added the header as a comment:

samples,contigs,total bp,mean length,95 CI length,min length,max length,median_,
—~legnth,contigs >1kb
alligator_mississippiensis.contigs.fasta,870,220436,253.37471264367815,6.
—9967833874072225,56,3831,236.0,5
anolis_carolinensis.contigs.fasta,1136,355837,313.2367957746479,8.00195622090676, 56,
—3182,243.0,9
gallus_gallus.contigs.fasta,5228,2841631,543.5407421576128,2.8905564028218618,56,4117,
—495.5,107
mus_musculus.contigs.fasta,1395,324498,232.61505376344087,6.895305881534584,56,1646,
—-88.0,13

Question: Why are my numbers slightly different than your numbers?

The process of read assembly often differs by operating system and sometimes by OS version, and some of these
differences are due to libraries that underlie many of the assembly programs. Expect to see differences. You should
not expect for them to be huge.

Attention: If you see max-contig sizes around 16KB (for vertebrates), that is commonly the entire or almost-
entire mtDNA genome. You do not tend to see entire mtDNA assemblies when the input DNA was extracted from
a source having few mitochondria (e.g. blood).

3.3. Phyluce Tutorials 21

http://en.wikipedia.org/wiki/Symbolic_link

phyluce documentation, Release 1.7.0

There are many, many other assembly QC steps you can run other than simply looking at the stats of the assembled
contigs. We will not go into those here.

Finding UCE loci

Now that we’ve assembled our contigs from raw reads, it’s time to find those contigs which are UCE loci and move
aside those that are not. The directory structure before we do this should look like the following:

uce-tutorial
+— assembly.conf
+— clean-fastqg

+— illumiprocessor.conf

+— illumiprocessor.log

+— phyluce_assembly_assemblo_trinity.log
+— raw—fastqg

+— trinity-assemblies

Before we locate UCE loci, you need to get the probe set used for the enrichments:

wget https://raw.githubusercontent.com/faircloth-lab/uce-probe-sets/master/uce-5k—
—probe-set/uce-5k-probes.fasta

Now, our directory structure looks like:

uce-tutorial
+— assembly.conf

+— clean-fastqg

+— illumiprocessor.conf

+— illumiprocessor.log

+— phyluce_assembly_assemblo_trinity.log
+— raw-fastqg

+— trinity-assemblies
+— uce-5k-probes. fasta

Now, run the phyluce_assembly_match_contigs_to_probes program:

phyluce_assembly _match_contigs_to_probes \
-—contigs spades-assemblies/contigs \
——probes uce-5k-probes.fasta \
——output uce-search-results

You should see output similar to the following (also stored in phyluce_assembly_assemblo_trinity.log):

2021-02-26 21:37:43,108 - phyluce_assembly_match_contigs_to_probes - INFO - =======
—Starting phyluce_assembly_match_contigs_to_probes =======

2021-02-26 21:37:43,108 - phyluce_assembly_match_contigs_to_probes - INFO - Version:
—1.7.0

2021-02-26 21:37:43,109 - phyluce_assembly_match_contigs_to_probes - INFO - Commit:
—None

2021-02-26 21:37:43,109 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
—-contigs: /data/spades-assemblies/contigs

2021-02-26 21:37:43,109 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
——Csv: test-output.csv

2021-02-26 21:37:43,109 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
——dupefile: None

2021-02-26 21:37:43,110 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
——keep_duplicates: None

(continues on next page)

22 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-02-26 21:37:43,110 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
——log_path: None

2021-02-26 21:37:43,110 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
—-min_coverage: 80

2021-02-26 21:37:43,110 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
—-min_identity: 80

2021-02-26 21:37:43,110 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
——output: /data/uce-search-results

2021-02-26 21:37:43,111 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
——-probes: /data/uce-5k-probes.fasta

2021-02-26 21:37:43,111 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
—-regex: " (uce-\d+) (?:_p\d+.x)

2021-02-26 21:37:43,111 - phyluce_assembly_match_contigs_to_probes - INFO - Argument -
—-verbosity: INFO

2021-02-26 21:37:43,225 - phyluce_assembly_match_contigs_to_probes - INFO - Creating,
—the UCE-match database

2021-02-26 21:37:43,266 - phyluce_assembly_match_contigs_to_probes - INFO -
—Processing contig data

2021-02-26 21:37:43,266 - phyluce_assembly_match_contigs_to_probes - INFO - —-—————————
2021-02-26 21:37:44,680 - phyluce_assembly_match_contigs_to_probes - INFO - alligator_
—mississippiensis: 422 (48.51%) uniques of 870 contigs, 0 dupe probe matches, 3 UCE_
—~loci removed for matching multiple contigs, 2 contigs removed for matching multiple
—UCE loci

2021-02-26 21:37:45,940 - phyluce_assembly_match_contigs_to_probes - INFO - anolis_
—~carolinensis: 399 (35.12%) uniques of 1136 contigs, 0 dupe probe matches, 0 UCE_
—loci removed for matching multiple contigs, 2 contigs removed for matching multiple
—UCE loci

2021-02-26 21:37:53,686 - phyluce_assembly_match_contigs_to_probes - INFO - gallus_
—gallus: 3492 (66.79%) uniques of 5228 contigs, 0 dupe probe matches, 22 UCE loci,,
—removed for matching multiple contigs, 37 contigs removed for matching multiple UCE_
—loci

2021-02-26 21:37:54,853 - phyluce_assembly_match_contigs_to_probes - INFO - mus_
—musculus: 324 (23.23%) uniques of 1395 contigs, 0 dupe probe matches, 0 UCE loci,,
—removed for matching multiple contigs, 1 contigs removed for matching multiple UCE_,
—loci

2021-02-26 21:37:54,853 - phyluce_assembly_match_contigs_to_probes - INFO - ——————————
2021-02-26 21:37:54,853 - phyluce_assembly_match_contigs_to_probes - INFO - The LASTZ
—alignments are in /data/uce-search-results

2021-02-26 21:37:54,854 - phyluce_assembly_match_contigs_to_probes - INFO - The UCE_
—match database is in /data/uce-search-results/probe.matches.sqglite

2021-02-26 21:37:54,854 - phyluce_assembly_match_contigs_to_probes - INFO - =======
—Completed phyluce_assembly match_contigs_to_probes ======

The header info at the top tells us exactly what version of the code we are running and keeps track of our options. The
important output is:

alligator_mississippiensis: 422 (48.51%) uniques of 870 contigs, 0 dupe probe matches,
— 3 UCE loci removed for matching multiple contigs, 2 contigs removed for matching
—multiple UCE loci

anolis_carolinensis: 399 (35.12%) uniques of 1136 contigs, 0 dupe probe matches, 0
—UCE loci removed for matching multiple contigs, 2 contigs removed for matching,
—multiple UCE loci

gallus_gallus: 3492 (66.79%) uniques of 5228 contigs, 0 dupe probe matches, 22 UCE_
—~loci removed for matching multiple contigs, 37 contigs removed for matching
—multiple UCE loci

(continues on next page)

3.3. Phyluce Tutorials 23

phyluce documentation, Release 1.7.0

(continued from previous page)

mus_musculus: 324 (23.23%) uniques of 1395 contigs, 0 dupe probe matches, 0 UCE loci
—removed for matching multiple contigs, 1 contigs removed for matching multiple UCE_,
—loci

Which we can break down to the following (for alligator_mississippiensis):

alligator_mississippiensis:
422 (48.51%) uniques of 870 contigs
0 dupe probe matches
3 UCE loci removed for matching multiple contigs
2 contigs removed for matching multiple UCE loci

These are the capture data for the alligator_mississippiensis sample. We targeted Sk UCE loci in this sample and
recovered roughly 422 of those loci in this subsampled set of reads. Before reaching that total of 422 loci, we
removed 3 UCE loci and 2 contigs from the data set because they looked like duplicates (probes supposedly targeting
different loci hit the same contig or two supposedly different contigs hit probes designed for a single UCE locus).

Question: Why is the count of UCE loci different by sample?

For these example data, we enriched some samples (alligator_mississippiensis and gallus_gallus) for 5k UCE loci,
while we enriched others (anolis_carolinensis and mus_musculus) for 2.5k UCE loci. Additionally, the 2.5k UCE
enrichments did not work very well (operator error). Finally, because we have subsampled the data to make the files
of reasonable size for the tutorial, that process removes lots of read that would have assembled into UCE contigs (e.g.,
if we use ALL the data, we recover 4000+ UCE contigs for alligator).

The directory structure now looks like the following (everything collapsed but the uce-search-results directory):

uce-tutorial
+— assembly.conf

+— clean-fastqg
+— illumiprocessor.conf
+— illumiprocessor.log

+— phyluce_assembly_assemblo_trinity.log

+— phyluce_assembly_match_contigs_to_probes.log
+— raw-fastqg

+— trinity-assemblies

+— uce-5k-probes.fasta

+— uce-search-results

+— alligator_mississippiensis.contigs.lastz
+— anolis_carolinensis.contigs.lastz

+— gallus_gallus.contigs.lastz

+— mus_musculus.contigs.lastz

+— probe.matches.sqglite

The search we just ran created lastz search result files for each taxon, and stored summary results of these searches in
the probe.matches.sqlite database (see The probe.matches.sqlite database for more information on this database and
its structure).

Extracting UCE loci

Now that we have located UCE loci, we need to determine which taxa we want in our analysis, create a list of those
taxa, and then generate a list of which UCE loci we enriched in each taxon (the “data matrix configuration file””). We
will then use this list to extract FASTA data for each taxon for each UCE locus.

First, we need to decide which taxa we want in our “taxon set”. So, we create a configuration file like so:

24 Chapter 3. Guide

http://www.bx.psu.edu/~rsharris/lastz/

phyluce documentation, Release 1.7.0

[all]
alligator_mississippiensis
anolis_carolinensis
gallus_gallus
mus_musculus

These names need to match the assembly names we used. Here, we have just put all 4 taxa in a list that we named all.
However, we can adjust this list in many ways (see Creating a data matrix configuration file).

Save this file as taxon-set.conf at the top level of our uce-tutorial directory. The directory should look like this, now:

uce-tutorial

+— assembly.conf

+— clean-fastqg

+— illumiprocessor.conf

+— illumiprocessor.log

+— phyluce_assembly_assemblo_trinity.log
+— phyluce_assembly_match_contigs_to_probes.log
+— raw-fastqg

+— taxon-set.conf

+— trinity-assemblies

+— uce-5k-probes.fasta

+— uce—-search-results

Now that we have this file created, we do the following to create the initial list of loci for each taxon:

create an output directory for this taxon set - this just keeps
things neat

cd uce-tutorial

mkdir -p taxon-sets/all

create the data matrix configuration file
phyluce_assembly_get_match_counts \
—-locus-db uce-search-results/probe.matches.sglite \
——-taxon-list-config taxon-set.conf \
-—taxon—-group 'all' \
——incomplete-matrix \
—-—-output taxon-sets/all/all-taxa-incomplete.conf

The output should look like the following:

2021-03-01 15:46:14,277 - phyluce_assembly_get_match_counts - INFO - ===========
—Starting phyluce_a: mbly_get_match >
2021-03-01 15:46:14,278 - phyluce_assembly_get_match_counts - INFO - Version: 1.7.0
2021-03-01 15:46:14,278 - phyluce_assembly_get_match_counts - INFO - Commit: None
2021-03-01 15:46:14,278 - phyluce_assembly_get_match_counts - INFO - Argument --—
—extend_locus_db: None

2021-03-01 15:46:14,278 - phyluce_assembly_get_match_counts - INFO - Argument -—-—
—incomplete_matrix: True

2021-03-01 15:46:14,278 - phyluce_assembly_get_match_counts - INFO - Argument —-keep_
—counts: False

2021-03-01 15:46:14,278 - phyluce_assembly_get_match_counts - INFO - Argument —--locus_
—db: /data/uce-search-results/probe.matches.sglite

2021-03-01 15:46:14,278 - phyluce_assembly_get_match_counts - INFO - Argument —--log_
—path: None

2021-03-01 15:46:14,278 - phyluce_assembly_get_match_counts - INFO - Argument —-—
—optimize: False

2021-03-01 15:46:14,279 - phyluce_assembly_get_match_counts - INFO - Argument --—

—output: /data/taxon-sets/all/all-taxa-incomplete.conf (continues on next page)

3.3. Phyluce Tutorials 25

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-03-01 15:46:14,279 - phyluce_assembly_get_match_counts - INFO
—random: False

2021-03-01 15:46:14,279 - phyluce_assembly_get_match_counts - INFO
—sample_size: 10

2021-03-01 15:46:14,279 - phyluce_assembly_get_match_counts - INFO
—samples: 10

2021-03-01 15:46:14,279 - phyluce_assembly_get_match_counts - INFO
—silent: False

2021-03-01 15:46:14,279 - phyluce_assembly_get_match_counts - INFO
—group: all

2021-03-01 15:46:14,279 - phyluce_assembly_get_match_counts - INFO
—list_config: /data/taxon-set.conf

2021-03-01 15:46:14,280 - phyluce_assembly_get_match_counts - INFO
—verbosity: INFO

2021-03-01 15:46:14,319 - phyluce_assembly_get_match_counts - INFO

—in the taxon-group '[all]' in the config file taxon-set.conf
2021-03-01 15:46:14,319 - phyluce_assembly_get_match_counts - INFO
—names from database

Argument —--
Argument —-
Argument —--
Argument —--
Argument —--taxon_
Argument —--taxon_
Argument --

There are 4 taxa,,
Getting UCE |

There are 5041

There are 3653

Writing the taxa,,

2021-03-01 15:46:44,488 - phyluce_assembly_get_match_counts - INFO -

—~total UCE loci in the database

2021-03-01 15:46:44,567 - phyluce_assembly_get_match_counts - INFO - Getting UCE_
—matches by organism to generate a INCOMPLETE matrix

2021-03-01 15:46:44,569 - phyluce_assembly_get_match_counts - INFO -

—UCE loci in an INCOMPLETE matrix

2021-03-01 15:46:44,569 - phyluce_assembly_get_match_counts - INFO -

—and loci in the data matrix to /data/taxon-sets/all/all-taxa-incomplete.conf
2021-03-01 15:46:44,574 - phyluce_assembly_get_match_counts — INFO - ==========
—Completed phyluce_assembly_get_match_counts ===s=======

And, our directory structure should now look like this (collapsing all but taxon-sets):

uce—-tutorial

+— assembly.conf
+— clean-fastqg
+— illumiprocessor.conf
+— illumiprocessor.log
+— phyluce_assembly_assemblo_trinity.log
+— phyluce_assembly_get_match_counts.log
+— phyluce_assembly_match_contigs_to_probes.log
+— taxon-set.conf
+— taxon-sets

+— all

+— all-taxa-incomplete.conf

+— trinity-assemblies
+— uce-5k-probes. fasta
+— uce-search-results

Now, we need to extract FASTA data that correspond to the loci in all-taxa-incomplete.conf:

change to the taxon-sets/all directory
cd taxon-sets/all

make a log directory to hold our log files - this keeps things neat

mkdir log

get FASTA data for taxa in our taxon set
phyluce_assembly_get_fastas_from_match_counts \

(continues on next page)

26

Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

—-—-contigs ../../spades—-assemblies/contigs \

—-locus-db ../../uce-search-results/probe.matches.sqglite \
—-match-count-output all-taxa-incomplete.conf \

——output all-taxa-incomplete.fasta \

——incomplete-matrix all-taxa-incomplete.incomplete \
-—log-path log

The output should look something like the following:

2021-03-01 15:47:55,574 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—===== Starting phyluce_assembly_get_fastas_from_match_counts ====

2021-03-01 15:47:55,575 — phyluce_assembly_get_fastas_from _match_counts - INFO -
—Version: 1.7.0

2021-03-01 15:47:55,575 - phyluce_assembly_get_fastas_from _match_counts - INFO -
—Commit: None

2021-03-01 15:47:55,575 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—Argument —--contigs: /data/spades—assemblies/contigs

2021-03-01 15:47:55,575 — phyluce_assembly_get_fastas_from _match_counts - INFO -
—Argument —--extend_locus_contigs: None

2021-03-01 15:47:55,575 - phyluce_assembly_get_fastas_from _match_counts - INFO -

—Argument —-extend_locus_db: None

2021-03-01 15:47:55,575 - phyluce_assembly_get_fastas_from_match_counts - INFO —_
—Argument --incomplete_matrix: /data/taxon-sets/all/all-taxa-incomplete.incomplete
2021-03-01 15:47:55,576 — phyluce_assembly_get_fastas_from _match_counts - INFO —
—Argument —--locus_db: /data/uce-search-results/probe.matches.sqglite

2021-03-01 15:47:55,576 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—Argument —--log_path: /data/taxon-sets/all/log

2021-03-01 15:47:55,576 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—Argument —--match_count_output: /data/taxon-sets/all/all-taxa—-incomplete.conf
2021-03-01 15:47:55,576 — phyluce_assembly_get_fastas_from _match_counts - INFO -
—Argument —--output: /data/taxon-sets/all/all-taxa-incomplete.fasta

2021-03-01 15:47:55,576 - phyluce_assembly_get_fastas_from _match_counts - INFO -
—Argument --verbosity: INFO

2021-03-01 15:47:55,609 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—There are 4 taxa in the match-count-config file named all-taxa-incomplete.conf
2021-03-01 15:47:55,612 - phyluce_assembly_get_fastas_from _match_counts - INFO -
—There are 3653 UCE loci in an INCOMPLETE matrix

2021-03-01 15:47:55,614 - phyluce_assembly_get_fastas_from _match_counts - INFO - —————
————-Getting UCE loci for alligator_mississippiensis—-———————-

2021-03-01 15:47:55,925 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—There are 422 UCE loci for alligator_mississippiensis

2021-03-01 15:47:55,925 - phyluce_assembly_get_fastas_from _match_counts - INFO -
—Parsing and renaming contigs for alligator_mississippiensis

2021-03-01 15:47:56,396 - phyluce_assembly_get_fastas_from _match_counts - INFO -
—Writing missing locus information to /data/taxon-sets/all/all-taxa-incomplete.
—~incomplete

2021-03-01 15:47:56,399 - phyluce_assembly_get_fastas_from_match_counts - INFO - —————

2021-03-01 15:47:56,638 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—There are 399 UCE loci for anolis_carolinensis

2021-03-01 15:47:56,638 — phyluce_assembly_get_fastas_from match_counts - INFO -
—Parsing and renaming contigs for anolis_carolinensis

2021-03-01 15:47:57,077 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—Replaced <20 ambiguous bases (N) in 7 contigs for anolis_carolinensis
2021-03-01 15:47:57,077 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—Writing missing locus information to /data/taxon-sets/all/all-taxa-incomplete.
—incomplete

(continues on next page)

3.3. Phyluce Tutorials 27

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-03-01 15:47:57,079 - phyluce_assembly_get_fastas_from match_counts - INFO - —-—-———
e ———— Getting UCE loci for gallus_gallus———————————————

2021-03-01 15:47:58,940 - phyluce_assembly_get_fastas_from_match_counts - INFO —
—~There are 3492 UCE loci for gallus_gallus

2021-03-01 15:47:58,940 - phyluce_assembly_get_fastas_from _match_counts - INFO -
—Parsing and renaming contigs for gallus_gallus

2021-03-01 15:48:01,965 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—Writing missing locus information to /data/taxon-sets/all/all-taxa-incomplete.

—~incomplete
2021-03-01 15:48:01,966 - phyluce_assembly_get_fastas_from match_counts - INFO - —--———
o Getting UCE loci for mus_musculus————————————————

2021-03-01 15:48:02,168 - phyluce_assembly_get_fastas_from_match_counts - INFO —
—There are 324 UCE loci for mus_musculus

2021-03-01 15:48:02,168 - phyluce_assembly_get_fastas_from _match_counts - INFO -
—Parsing and renaming contigs for mus_musculus

2021-03-01 15:48:02,508 - phyluce_assembly_get_fastas_from_match_counts - INFO -
—Writing missing locus information to /data/taxon-sets/all/all-taxa-incomplete.

—incomplete
2021-03-01 15:48:02,519 - phyluce_assembly_get_fastas_from _match_counts - INFO - ====
—Completed phyluce_assembly get_fastas_from _match_counts ====

And, our directory structure should now look like this (collapsing all but taxon-sets):

uce-tutorial

+— assembly.conf

+— clean-fastqg

+— illumiprocessor.conf

+— illumiprocessor.log

+— phyluce_assembly_assemblo_trinity.log

+— phyluce_assembly_get_match_counts.log

+— phyluce_assembly_match_contigs_to_probes.log
+— taxon-set.conf

+— taxon-sets
+— all
+— all-taxa-incomplete.conf
+— all-taxa-incomplete.fasta
+— all-taxa-incomplete.incomplete
+— log

+— phyluce_assembly_get_fastas_from_match_counts.log
+— phyluce_assembly_get_fastas_from_match_counts.log
+— trinity-assemblies
+— uce-5k-probes. fasta
+— uce-search-results

The extracted FASTA data are in a monolithic FASTA file (all data for all organisms) named all-taxa-incomplete.fasta.

Exploding the monolithic FASTA file

Lots of times we want to know individual statistics on UCE assemblies for a given taxon. We can do that by exploding
the monolithic fasta file into a file of UCE loci that we have enriched by taxon, then running stats on those exploded
files. To do that, run the following:

explode the monolithic FASTA by taxon (you can also do by locus)
phyluce_assembly_explode_get_fastas_file \
—-—input all-taxa—-incomplete.fasta \

(continues on next page)

28 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

——output exploded-fastas \
——by-taxon

get summary stats on the FASTAS
for i in exploded-fastas/=*.fasta;
do
phyluce_assembly_get_fasta_lengths —--input $i --csv;
done

samples,contigs,total bp,mean length, 95 CI length,min length,max length,median,
—legnth,contigs >1kb
alligator-mississippiensis.unaligned.fasta,422,118864,281.66824644549763,9.
—03914154267783,206,3831,250.5,1
anolis-carolinensis.unaligned.fasta,399,206926,518.6115288220551,11.261692813904311,
—206,1115,525.0,1
gallus—-gallus.unaligned.fasta,3492,2157267,617.7740549828179,3.075870593111506,307,
—1503,607.0,81
mus-musculus.unaligned. fasta, 324,188082,580.5,13.930004844688803,207,1058,623.5,6

Aligning UCE loci

You have lots of options when aligning UCE loci. You can align the loci and use those alignments with no trimming,
you can edge-trim the alignments following some algorithm, and you can end-+internally trim alignments following
some algorithm. It’s hard to say what is best in all situations. When taxa are “closely” related (< 30-50 MYA,
perhaps), I think that edge-trimming alignments is reasonable. When the taxa you are interested in span a wider range
of divergence times (> 50 MYA), you may want to think about internal trimming.

How you accomplish you edge- or internal-trimming is also a decision you need to make. In phyluce, we implement
our edge-trimming algorithm by running the alignment program “as-is” (i.e., without the —no-trim) option. We do
internal-trimming by turning off trimming using —no-trim, then passing the resulting alignments (in FASTA format) to
a parallel wrapper around Gblocks.

You also have a choice of aligner - mafft or muscle (or you can externally align UCE loci using a tool like SAT¢, as
well).

Generally, I would use mafft.

Edge trimming

Edge trimming your alignments is a relatively simple matter. You can run edge trimming, as follows:

make sure we are in the correct directory
cd uce-tutorial/taxon-sets/all

align the data
phyluce_align_seqcap_align \
——input all-taxa-incomplete.fasta \
——-output mafft-nexus—edge-trimmed \
——taxa 4 \
-—aligner mafft \
-—cores 12 \
——incomplete-matrix \
-—-log-path log

3.3. Phyluce Tutorials 29

https://github.com/faircloth-lab/phyluce
http://molevol.cmima.csic.es/castresana/Gblocks.html
http://mafft.cbrc.jp/alignment/software/
http://www.drive5.com/muscle/
http://mafft.cbrc.jp/alignment/software/

phyluce documentation, Release 1.7.0

Warning: Note that I am using 12 physical CPU cores here. You need to use the number of physical cores
available on your machine.

The output should look like this:

2021-03-01 15:51:21,854 - phyluce_align_seqcap_align - INFO - ============== Starting_
—phyluce_align_seqcap_align =====s=========

2021-03-01 15:51:21,855 - phyluce_align_seqcap_align - INFO - Version: 1.7.0
2021-03-01 15:51:21,855 - phyluce_align_seqgcap_align — INFO - Commit: None

2021-03-01 15:51:21,856 — phyluce_align_seqcap_align - INFO - Argument —-—aligner:
—mafft

2021-03-01 15:51:21,856 - phyluce_align_seqgcap_align - INFO - Argument --ambiguous:
—False

2021-03-01 15:51:21,856 - phyluce_align_seqcap_align - INFO - Argument --cores: 12
2021-03-01 15:51:21,856 — phyluce_align_seqcap_align - INFO - Argument —-input: /data/
—taxon-sets/all/all-taxa—-incomplete.fasta

2021-03-01 15:51:21,857 - phyluce_align_seqcap_align — INFO - Argument --log_path: /
—data/taxon-sets/all/log

2021-03-01 15:51:21,857 - phyluce_align_seqcap_align - INFO - Argument —--max_
—divergence: 0.2

2021-03-01 15:51:21,857 - phyluce_align_seqcap_align - INFO - Argument --min_length:
100

2021-03-01 15:51:21,857 - phyluce_align_seqcap_align - INFO - Argument —--no_trim:
—False

2021-03-01 15:51:21,857 - phyluce_align_seqcap_align - INFO - Argument —--notstrict:
—True

2021-03-01 15:51:21,858 — phyluce_align_seqgcap_align - INFO - Argument —--output: /
—data/taxon-sets/all/mafft-nexus—edge-trimmed

2021-03-01 15:51:21,858 - phyluce_align_seqcap_align - INFO - Argument --output_
—format: nexus

2021-03-01 15:51:21,858 - phyluce_align_seqcap_align - INFO - Argument —-—-proportion:
—0.65

2021-03-01 15:51:21,858 - phyluce_align_seqgcap_align - INFO - Argument --taxa: 4
2021-03-01 15:51:21,858 - phyluce_align_seqcap_align - INFO - Argument —--threshold: 0.
2021-03-01 15:51:21,859 - phyluce_align_seqgcap_align - INFO - Argument --verbosity:
— INFO

2021-03-01 15:51:21,859 - phyluce_align_seqcap_align - INFO - Argument --window: 20
2021-03-01 15:51:21,859 - phyluce_align_seqcap_align - INFO - Building the locus,
—dictionary

2021-03-01 15:51:21,859 - phyluce_align_seqcap_align - INFO - Removing ALL sequences,,
—with ambiguous bases...

2021-03-01 15:51:22,328 - phyluce_align_seqgcap_align — WARNING - DROPPED locus uce-—
4698. Too few taxa (N < 3).

[many more loci dropped here]

2021-03-01 15:51:22,750 - phyluce_align_seqgcap_align - INFO - Aligning with MAFFT
2021-03-01 15:51:22,751 - phyluce_align_seqcap_align - INFO - Alignment begins. 'X'
—indicates dropped alignments (these are reported after alignment)

................. [continued]

2021-03-01 15:51:28,544 - phyluce_align_seqcap_align - INFO - Alignment ends
2021-03-01 15:51:28,545 - phyluce_align_seqgcap_align - INFO - Writing output files
2021-03-01 15:51:28,788 - phyluce_align_seqgcap_align — INFO - ==============
—Completed phyluce_align_seqcap_align =============

The . values that you see represent loci that were aligned and succesfully trimmed. Any X values that you see represent
loci that were removed because trimming reduced their length to effectively nothing.

30 Chapter 3. Guide

phyluce documentation, Release 1.7.0

Attention: The number of potential alignments dropped here is abnormally large becase our sample size is so
small (n=4).

The current directory structure should look like (I've collapsed a number of branches in the tree):

uce-tutorial
+— assembly.conf

+— taxon-sets
+— all
+— all-taxa-incomplete.conf
+— all-taxa-incomplete.fasta
+— all-taxa-incomplete.incomplete
+— exploded-fastas
+— log
+— mafft-nexus-edge-trimmed
+— uce-1008.nexus
+— uce—-1014.nexus
+— uce-1039.nexus

+— uce-991.nexus

+— uce-search-results

We can output summary stats for these alignments by running the following program:

phyluce_align_get_align_summary_data \
——alignments mafft-nexus—edge—-trimmed \
——cores 12 \
-—-log-path log

Warning: Note that I am using 12 physical CPU cores here. You need to use the number of physical cores
available on your machine.

The output from the program should look like:

2021-03-01 15:58:43,241 - phyluce_align_get_align_summary_data - INFO - =========
—Starting phyluce_align_get_align_summary_data =========

2021-03-01 15:58:43,241 - phyluce_align_get_align_summary_data - INFO - Version: 1.7.0
2021-03-01 15:58:43,241 - phyluce_align_get_align_summary_data - INFO - Commit: None
2021-03-01 15:58:43,241 - phyluce_align_get_align_summary_data - INFO - Argument --—
—alignments: /data/taxon-sets/all/mafft-nexus—-edge-trimmed

2021-03-01 15:58:43,241 - phyluce_align_get_align_summary_data - INFO - Argument --—
—~cores: 12

2021-03-01 15:58:43,241 - phyluce_align_get_align_summary_data - INFO - Argument --
—input_format: nexus

2021-03-01 15:58:43,242 - phyluce_align_get_align_summary_data - INFO - Argument --
—log_path: /data/taxon-sets/all/log

2021-03-01 15:58:43,242 - phyluce_align_get_align_summary_data - INFO - Argument --—
—output: None

2021-03-01 15:58:43,242 - phyluce_align_get_align_summary_data - INFO - Argument --
—show_taxon_counts: False

2021-03-01 15:58:43,242 - phyluce_align_get_align_summary_data - INFO - Argument --
—verbosity: INFO

(continues on next page)

3.3. Phyluce Tutorials 31

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-03-01 15:58:43,242 - phyluce_align_get_align_summary_data - INFO - Getting,
—alignment files

2021-03-01 15:58:43,251 - phyluce_align_get_align_summary_data - INFO - Computing,
—summary statistics using 12 cores

2021-03-01 15:58:43,596 - phyluce_align_get_align_summary_data - INFO - ——————————————
ym——————— Alignment summary —-——————————————————————

2021-03-01 15:58:43,597 - phyluce_align_get_align_summary_data - INFO - [Alignments],
—~loci: 190

2021-03-01 15:58:43,597 - phyluce_align_get_align_summary_data - INFO - [Alignments],
—length: 86,032

2021-03-01 15:58:43,597 - phyluce_align_get_align_summary_data - INFO - [Alignments]
—mean: 452.80

2021-03-01 15:58:43,597 - phyluce_align_get_align_summary_data - INFO - [Alignments],
—95% CI: 21.51

2021-03-01 15:58:43,597 - phyluce_align_get_align_summary_data - INFO - [Alignments],
—min: 126

2021-03-01 15:58:43,598 - phyluce_align_get_align_summary_data - INFO - [Alignments]
—max: 907

2021-03-01 15:58:43,598 - phyluce_align_get_align_summary_data - INFO - —-—————————————
————= Informative Sites summary ———————————————————

2021-03-01 15:58:43,598 - phyluce_align_get_align_summary_data - INFO - [Sites] loci:
. 190

2021-03-01 15:58:43,598 - phyluce_align_get_align_summary_data - INFO - [Sites]
—total: 58

2021-03-01 15:58:43,598 - phyluce_align_get_align_summary_data - INFO - [Sites] mean:
. 0.31

2021-03-01 15:58:43,598 - phyluce_align_get_align_summary_data - INFO - [Sites] 95%,
—CI: 0.18

2021-03-01 15:58:43,598 - phyluce_align_get_align_summary_data - INFO - [Sites] min: _
— 0

2021-03-01 15:58:43,599 - phyluce_align_get_align_summary_data - INFO - [Sites] max:
. 12

2021-03-01 15:58:43,600 - phyluce_align_get_align_summary_data - INFO - —-—————————————
b ———— Taxon summary —————————————————————————

2021-03-01 15:58:43,600 - phyluce_align_get_align_summary_data - INFO - [Taxa] mean:
- 3.15

2021-03-01 15:58:43,600 - phyluce_align_get_align_summary_data - INFO - [Taxa] 95%
—CI: 0.05

2021-03-01 15:58:43,600 - phyluce_align_get_align_summary_data - INFO - [Taxa] min:
— 3

2021-03-01 15:58:43,600 - phyluce_align_get_align_summary_data - INFO - [Taxa] max:
— 4

2021-03-01 15:58:43,601 - phyluce_align_get_align_summary_data - INFO - —-—————————————
———— Missing data from trim summary —--———————————————

2021-03-01 15:58:43,601 - phyluce_align_get_align_summary_data — INFO - [Missing]
—mean: 9.36

2021-03-01 15:58:43,601 - phyluce_align_get_align_summary_data - INFO - [Missing] 95%
—CI: 0.84

2021-03-01 15:58:43,601 - phyluce_align_get_align_summary_data - INFO - [Missing],
—min: 0.00

2021-03-01 15:58:43,601 - phyluce_align_get_align_summary_data - INFO - [Missing]
—max: 32.67

2021-03-01 15:58:43,603 - phyluce_align_get_align_summary_data - INFO - ——————————————
= Character count summary ————————————————————

2021-03-01 15:58:43,603 - phyluce_align_get_align_summary_data - INFO - [All
—characters] 268,288

2021-03-01 15:58:43,603 - phyluce_align_get_align_summary_data - INFO - [Nucleotides]
N 235,385 (continues on next page)
32 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-03-01 15:58:43,603 - phyluce_align_get_align_summary_data - INFO - —-—————————————

——— Data matrix completeness summary ———————————————

2021-03-01 15:58:43,604 - phyluce_align_get_align_summary_data - INFO - [Matrix 50%] _
— 190 alignments

2021-03-01 15:58:43,604 - phyluce_align_get_align_summary_data - INFO - [Matrix 55%]
- 190 alignments

2021-03-01 15:58:43,604 - phyluce_align_get_align_summary_data - INFO - [Matrix 60%]
— 190 alignments
2021-03-01 15:58:43,604 - phyluce_align_get_align_summary_data - INFO - [Matrix 65%]

- 190 alignments
2021-03-01 15:58:43,604 - phyluce_align_get_align_summary_data - INFO - [Matrix 70%]
- 190 alignments
2021-03-01 15:58:43,604 - phyluce_align_get_align_summary_data - INFO - [Matrix 75%]
o 190 alignments

2021-03-01 15:58:43,604 - phyluce_align_get_align_summary_data - INFO - [Matrix 80%]
. 29 alignments

2021-03-01 15:58:43,605 - phyluce_align_get_align_summary_data - INFO - [Matrix 85%]
- 29 alignments
2021-03-01 15:58:43,605 - phyluce_align_get_align_summary_data - INFO - [Matrix 90%]
. 29 alignments

2021-03-01 15:58:43,605 - phyluce_align_get_align_summary_data - INFO - [Matrix 95%]
. 29 alignments

2021-03-01 15:58:43,605 - phyluce_align_get_align_summary_data - INFO - ————-—————————
m————————— Character counts - ——————————---------————

2021-03-01 15:58:43,605 - phyluce_align_get_align_summary_data - INFO - [Characters]
—'-" is present 7,819 times
2021-03-01 15:58:43,605 - phyluce_align_get_align_summary_data - INFO - [Characters]
—'?"'" is present 25,084 times
2021-03-01 15:58:43,605 - phyluce_align_get_align_summary_data - INFO - [Characters]
—'A'" is present 70,371 times
2021-03-01 15:58:43,605 - phyluce_align_get_align_summary_data - INFO - [Characters]
—'C'" is present 48,431 times
2021-03-01 15:58:43,606 - phyluce_align_get_align_summary_data - INFO - [Characters]
—'G"'" is present 41,941 times
2021-03-01 15:58:43,606 - phyluce_align_get_align_summary_data - INFO - [Characters]

—'T'" is present 74,642 times
2021-03-01 15:58:43,606 - phyluce_align_get_align_summary_data - INFO - =========

—~Completed phyluce_align_get_align_summary_data ========

Attention: Note that there are only 2 sets of counts in the Data matrix completeness section because
(1) we dropped all loci having fewer than 3 taxa and (2) that only leaves two remaining options.

The most important data here are the number of loci we have and the number of loci in data matrices of different
completeness. The locus length stats are also reasonably important, but they can also be misleading because edge-
trimming does not remove internal gaps that often inflate the length of alignments.

Internal trimming

Now, let’s do the same thing, but run internal trimming on the resulting alignments. We will do that by turning off
trimming —no-trim and outputting FASTA formatted alignments with —output-format fasta.

make sure we are in the correct directory
cd uce-tutorial/taxon-sets/all

(continues on next page)

3.3. Phyluce Tutorials 33

phyluce documentation, Release 1.7.0

(continued from previous page)

align the data - turn off trimming and output FASTA
phyluce_align_seqgcap_align \
——input all-taxa-incomplete.fasta \
——output mafft-nexus—internal-trimmed \
——taxa 4 \
——aligner mafft \
-—cores 12 \
——incomplete-matrix \
——output-format fasta \
——no—-trim \
—-—log-path log

Attention: The number of UCE loci dropped here is abnormally large becase our sample size is so small (n=4).

Warning: Note that I am using 12 physical CPU cores here. You need to use the number of physical cores
available on your machine.

The output from the program should be the roughly the same as what we saw before. The current directory structure
should look like (I've collapsed a number of branches in the tree):

uce-tutorial
+— assembly.conf

+— taxon-sets
+— all
+— all-taxa-incomplete.conf
+— all-taxa-incomplete.fasta
+— all-taxa-incomplete.incomplete
+— exploded-fastas

+— log
+— mafft-nexus—-edge-trimmed
+— mafft-nexus—-internal-trimmed

+— uce-1008.nexus
+— uce-1014.nexus
+— uce-1039.nexus

+— uce-991.nexus

+— uce-search-results

Now, we are going to trim these loci using Gblocks:

run gblocks trimming on the alignments
phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed \
——alignments mafft-nexus—internal-trimmed \
——output mafft-nexus—-internal-trimmed-gblocks \
-—cores 12 \
-—log log

The output should look like this:

34 Chapter 3. Guide

http://molevol.cmima.csic.es/castresana/Gblocks.html

phyluce documentation, Release 1.7.0

2021-03-01 16:01:38,320 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed
—— INFO - Starting phyluce_align_get_gblocks_trimmed_alignments_from_ untrimmed
2021-03-01 16:01:38,321 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed
—— INFO - Version: 1.7.0

2021-03-01 16:01:38,321 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed
—— INFO - Commit: None

2021-03-01 16:01:38,321 - phyluce_align_get_gblocks_trimmed_alignments_from_ untrimmed
—— INFO - Argument --alignments: /data/taxon-sets/all/mafft-nexus—internal-trimmed
2021-03-01 16:01:38,321 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed,
—— INFO - Argument —--bl: 0.5

2021-03-01 16:01:38,321 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed
—— INFO - Argument —--b2: 0.85

2021-03-01 16:01:38,322 - phyluce_align_get_gblocks_trimmed_alignments_from_ untrimmed
—— INFO - Argument --b3: 8

2021-03-01 16:01:38,322 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed
—— INFO - Argument —--b4: 10

2021-03-01 16:01:38,322 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed
—— INFO - Argument —--cores: 12

2021-03-01 16:01:38,322 - phyluce_align_get_gblocks_trimmed_alignments_from_ untrimmed
—— INFO - Argument --input_format: fasta

2021-03-01 16:01:38,323 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed
—— INFO - Argument --log_path: /data/taxon-sets/all/log

2021-03-01 16:01:38,323 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed,
—— INFO - Argument —--output: /data/taxon-sets/all/mafft-nexus—-internal-trimmed-
—gblocks

2021-03-01 16:01:38,323 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed,
—— INFO - Argument --output_format: nexus

2021-03-01 16:01:38,323 - phyluce_align_get_gblocks_trimmed_alignments_from_ untrimmed
—— INFO - Argument --verbosity: INFO

2021-03-01 16:01:38,323 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed
—— INFO - Getting aligned sequences for trimming

2021-03-01 16:01:38,338 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed,
—— INFO - Alignment trimming begins.

................. [continued]

2021-03-01 16:01:38,729 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed,
—— INFO - Alignment trimming ends

2021-03-01 16:01:38,730 - phyluce_align_get_gblocks_trimmed_alignments_from untrimmed
—— INFO - Writing output files

2021-03-01 16:01:38,901 - phyluce_align_get_gblocks_trimmed_alignments_from_ untrimmed
—— WARNING - Unable to write uce-816 - alignment too short

2021-03-01 16:01:39,099 - phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed,
—— INFO - Completed phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed

The . values that you see represent loci that were aligned and succesfully trimmed. Any X values that you see represent
loci that were aligned and trimmed so much that there was nothing left.

The current directory structure should look like (I’ve collapsed a number of branches in the tree):

uce-tutorial
+— assembly.conf

+— taxon-sets
+— all
+— all-taxa-incomplete.conf
+— all-taxa-incomplete.fasta
+— all-taxa-incomplete.incomplete
+— exploded-fastas
+— log

(continues on next page)

3.3. Phyluce Tutorials 35

phyluce documentation, Release 1.7.0

(continued from previous page)

+— uce-—
+— uce-—
+— uce-
+— uce-—

+— uce-search-results

mafft-nexus-edge-trimmed
mafft-nexus-internal-trimmed
mafft-nexus-internal-trimmed-gblocks

1008 .nexus
1014 .nexus
1039.nexus

991 .nexus

We can output summary stats for these alignments by running the following program:

phyluce_align_get_align_summary_data \
——alignments mafft-nexus—internal-trimmed-gblocks \

—-—cores 12

\

—-—log-path log

Warning:

Note that I am using 12 physical CPU cores here. You need to use the number of physical cores
available on your machine.

The output from the program should look like:

2021-03-01
—Starting
2021-03-01
2021-03-01 16:
2021-03-01 16:
—alignments:
2021-03-01 16:
—cores: 12
2021-03-01 1le6:
—input_format
2021-03-01 16:
—~log_path:

phy
16:

uce_align_

03:34,322
03:34,322
03:34,323

16:03:34,322 - phyluce_align_get_align_summary_data

get_align_summary_data =========
- phyluce_align_get_align_summary_data
— phyluce_align_get_align_summary_data

- phyluce_align_get_align_summary_data

INFO

INFO
INFO
INFO

/data/taxon-sets/all/mafft-nexus—internal-trimmed-gblocks
- phyluce_align_get_align_summary_data - INFO -

03:34,323

03:34,323
: nexus
03:34,323

- phyluce_align_get_align_summary_data

- phyluce_align_get_align_summary_data

/data/taxon-sets/all/log

2021-03-01 16:03:34,323 - phyluce_align_get_align_summary_data

—output: None

2021-03-01 16:03:34,323 - phyluce_align_get_align_summary_data

—show_taxon_counts:

False

2021-03-01 16:03:34,323 - phyluce_align_get_align_summary_data

—verbosity:

INFO

2021-03-01 16:03:34,323 - phyluce_align_get_align_summary_data
—alignment files
2021-03-01 16:03:34,334 - phyluce_align_get_align_summary_data
—summary statistics using 12 cores

2021-03-01 16:03:34,641 - phyluce_align_get_align_summary_data

————————— Alignment summary
2021-03-01 16:03:34,642
—loci: 189

2021-03-01 16:03:34,642
—length: 70,380
2021-03-01 16:03:34,643
—mean: 372.38

2021-03-01 16:03:34,643

—95% CI: 21.61

— phyluce_align_get_align_summary_data
— phyluce_align_get_align_summary_data
- phyluce_align_get_align_summary_data

— phyluce_align_get_align_summary_data

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

Version: 1.7.0
Commit: None
Argument -—--—
Argument —-
Argument —--
Argument --
Argument —--
Argument —--
Argument —--
Getting,,
Computing,,
[Alignments]
[Alignments]
[Alignments]

[Alignments]

(continues on next page)

36

Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-03-01 16:

—min: 140

2021-03-01 16:

—max: 797

2021-03-01 16:
Informative Sites
2021-03-01 16:

. 189

2021-03-01 16:

—total:

2021-03-01 16:

0.37

—

2021-03-01 16:

03:34,643 - phyluce_align_get_align_summary_data
03:34,643 - phyluce_align_get_align_summary_data
03:34,644 - phyluce_align_get_align_summary_data

summary

03:34,645 - phyluce_align_get_align_summary_data
03:34,645 - phyluce_align_get_align_summary_data
69

03:34,645 - phyluce_align_get_align_summary_data
03:34,645 - phyluce_align_get_align_summary_data

—CI: 0.19

2021-03-01 16:03:34,646 - phyluce_align_get_align_summary_data
— 0

2021-03-01 16:03:34,646 - phyluce_align_get_align_summary_data
- 12

2021-03-01 16:03:34,648 - phyluce_align_get_align_summary_data
o ——— Taxon summary —————————————————————————
2021-03-01 16:03:34,649 - phyluce_align_get_align_summary_data
. 3.15

2021-03-01 16:03:34,649 - phyluce_align_get_align_summary_data
—CI: 0.05

2021-03-01 16:03:34,649 - phyluce_align_get_align_summary_data
— 3

2021-03-01 16:03:34,650 - phyluce_align_get_align_summary_data
s 4

2021-03-01 16:03:34,650 - phyluce_align_get_align_summary_data

———— Missing data from trim summary —--———————————————
2021-03-01 16:03:34,651 - phyluce_align_get_align_summary_data
—mean: 0.00

2021-03-01 16:03:34,651 - phyluce_align_get_align_summary_data
—CI: 0.00

2021-03-01 16:03:34,651 - phyluce_align_get_align_summary_data
—min: 0.00

2021-03-01 16:03:34,651 - phyluce_align_get_align_summary_data
—max: 0.00

2021-03-01 16:03:34,655 - phyluce_align_get_align_summary_data
—————— Character count summary —-———————————————————

2021-03-01 16:
—characters]

2021-03-01 16:

—

2021-03-01 16

5821—03—01
é821—03—01
2621703*01
5821—03—01

2021-03-01

16:

16:

16:

16:

16:

03:34,655 - phyluce_align_get_align_summary_data
222,814

03:34,655 - phyluce_align_get_align_summary_data
215,091

:03:34,656 — phyluce_align_get_align_summary_data
——— Data matrix completeness summary
2021-03-01 16:

03:34,656 — phyluce_align_get_align_summary_data
189 alignments

03:34,656 — phyluce_align_get_align_summary_data
189 alignments

03:34,657 - phyluce_align_get_align_summary_data
189 alignments

03:34,657 - phyluce_align_get_align_summary_data
189 alignments

03:34,657 - phyluce_align_get_align_summary_data
189 alignments

03:34,657 - phyluce_align_get_align_summary_data

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

[Alignments]
[Alignments]

loci:

[

[Sites]

[Sites]
[Sites] mean: |
[Sites]
[Sites] min:
[Sites]

max:

[Taxa] mean:

[Taxa]
[Taxa] min:

[Taxa] max:

[Missing]
[Missing]
[Missing]
[Missing]
[All
[Nucleotides]
[Matrix
[Matrix
[Matrix
[Matrix
[Matrix

[Matrix 75%]

—

189 alignments

(continues on next page)

3.3. Phyluce Tutorials

37

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-03-01
2821703701
5621—03—01
£821—03—Ol

2021-03-01

16:
16:
16:

16:

'-'" is present

34,659

03:34,658 - phyluce_align_get_align_summary_data
29 alignments

03:34,658 - phyluce_align_get_align_summary_data
29 alignments

03:34,658 - phyluce_align_get_align_summary_data
29 alignments

03:34,658 - phyluce_align_get_align_summary_data
29 alignments

16:03:34,659 - phyluce_align_get_align_summary_data

Character counts

2021-03-01 16:03:

- phyluce_align_get_align_summary_data

7,723 times

o
2021-03-01 16:03:34,659 - phyluce_align_get_align_summary_data
—'A'" is present 64,167 times

2021-03-01 16:03:34,659 - phyluce_align_get_align_summary_data
—'C'" is present 44,488 times

2021-03-01 16:03:34,660 - phyluce_align_get_align_summary_data
—'G"'" is present 37,901 times

2021-03-01 16:03:34,660 - phyluce_align_get_align_summary_data
—'T"'" is present 68,535 times

2021-03-01 16:03:34,660 - phyluce_align_get_align_summary_data
—Completed phyluce_align_get_align_summary_data ========

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

[Matrix 80%]
[Matrix 85%]
[Matrix
[Matrix
[Characters]
[Characters]
[Characters]

[Characters]

[Characters]

Alignment cleaning

If you look in one of the files for the alignments we currently have, you will notice that each alignment contains a
name that is a combination of the taxon name + the locus name for that taxon. This is not what we want downstream,
but it does enable us to ensure the correct data went into each alignment. So, we need to clean our alignments. For the
remainder of this tutorial, we will work with the Gblocks trimmed alignments, so we will clean those alignments:

make sure we are in the correct directory
cd uce-tutorial/taxon-sets/all

align the data - turn off trimming and output FASTA
phyluce_align_remove_locus_name_from_files \
——alignments mafft-nexus—internal-trimmed-gblocks \
——output mafft-nexus—-internal-trimmed-gblocks-clean \
—-—cores 12 \
—-—-log-path log

The output should be similar to:

2021-03-01 16:05:12,605 - phyluce_align_remove_locus_name_from_files - INFO - ===
—Starting phyluce_align_remove_locus_name_from files ===

2021-03-01 16:05:12,605 - phyluce_align_remove_locus_name_from_ files - INFO — |
—Version: 1.7.0

2021-03-01 16:05:12,605 - phyluce_align_remove_locus_name_from_files - INFO - Commit:
—None

2021-03-01 16:05:12,606 - phyluce_align_remove_locus_name_from_files - INFO —
—Argument —--alignments: /data/taxon-sets/all/mafft-nexus-internal-trimmed-gblocks
2021-03-01 16:05:12,606 - phyluce_align_remove_locus_name_from_ files - INFO —
—Argument —--cores: 12

2021-03-01 16:05:12,606 - phyluce_align_remove_locus_name_from_files - INFO — |
—Argument —--input_format: nexus

2021-03-01 16:05:12,607 - phyluce_align_remove_locus_name_from_files - INFO —
SATgUmMEent ——tog_path: /data/taxon=sets/ati/ 1og (continues on next page)
38 Chapter 3. Guide

http://molevol.cmima.csic.es/castresana/Gblocks.html

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-03-01 16:05:12,607 - phyluce_align_remove_locus_name_from_ files - INFO — |

—Argument —--output: /data/taxon-sets/all/mafft-nexus-internal-trimmed-gblocks-clean
2021-03-01 16:05:12,607 - phyluce_align_remove_locus_name_from_files - INFO — |
—Argument —-output_format: nexus

2021-03-01 16:05:12,608 - phyluce_align_remove_locus_name_from_files - INFO —
—Argument —--taxa: None

2021-03-01 16:05:12,608 - phyluce_align_remove_locus_name_from files - INFO — |
—Argument --verbosity: INFO

2021-03-01 16:05:12,608 - phyluce_align_remove_locus_name_from_files - INFO - Getting,
—alignment files

Running............... [continued]

2021-03-01 16:05:12,848 - phyluce_align_remove_locus_name_from_files - INFO - Taxon,,
—names in alignments: gallus_gallus,mus_musculus,anolis_carolinensis,alligator_
—mississippiensis

2021-03-01 16:05:12,849 - phyluce_align_remove_locus_name_from_files - INFO - ===
—Completed phyluce_align_re lo

[

s_name_from_files ==

The current directory structure should look like (I've collapsed a number of branches in the tree):

uce-tutorial
+— assembly.conf

+— taxon-sets
+— all
+— all-taxa-incomplete.conf
+— all-taxa-incomplete.fasta
+— all-taxa-incomplete.incomplete
+— exploded-fastas

+— log
+— mafft-nexus-edge-trimmed
+— mafft-nexus-internal-trimmed

+— mafft-nexus-internal-trimmed-gblocks

+— mafft-nexus-internal-trimmed-gblocks-clean
+— uce-1008.nexus
+— uce-1014.nexus
+— uce-1039.nexus

+— uce-991.nexus

+— uce-search-results

Now, if you look in one of the individual alignment files, you will see that the locus names are removed. We’re ready
to generate our final data matrices.

Final data matrices

For the most part, I analyze 75% and 95% complete matrices, where “completeness” for the 75% matrix means that,
in a study of 100 taxa (total), all alignments will contain at least 75 of these 100 taxa. Similarly, for the 95% matrix,
in a study of 100 taxa, all alignments will contain 95 of these 100 taxa.

Attention: Notice that this metric for completeness does not pay attention to which taxa are in which alignments
- so the 75%, above, does not mean that a given taxon will have data in all 75 of 100 alignments.

To create a 75% data matrix, run the following. Notice that the integer following —taxa is the total number of organisms

3.3. Phyluce Tutorials 39

phyluce documentation, Release 1.7.0

in the study.

make sure we are in the correct directory
cd uce-tutorial/taxon-sets/all

the integer following —--taxa 1s the number of TOTAL taxa
and I use "75p" to denote the 75% complete matrix
phyluce_align_get_only_loci_with_min_taxa \
——alignments mafft-nexus—internal-trimmed-gblocks-clean \
——taxa 4 \
—-percent 0.75 \
——output mafft-nexus—-internal-trimmed-gblocks—-clean-75p \
——cores 12 \
-—-log-path log

The output should look like the following:

2021-03-01 16:06:56,294 - phyluce_align_get_only_loci_with_min_taxa - INFO - =======
—Starting phyluce_align_get_only_loci_with_min taxa ======

2021-03-01 16:06:56,294 - phyluce_align_get_only_loci_with min_taxa - INFO - Version:
—1.7.0

2021-03-01 16:06:56,294 - phyluce_align_get_only_loci_with_min_taxa - INFO - Commit:
—None

2021-03-01 16:06:56,295 - phyluce_align_get_only_loci_with_min_taxa - INFO - Argument,
——-—alignments: /data/taxon-sets/all/mafft-nexus—-internal-trimmed-gblocks-clean
2021-03-01 16:06:56,295 - phyluce_align_get_only_loci_with min_taxa - INFO - Argument
———cores: 12

2021-03-01 16:06:56,295 - phyluce_align_get_only_loci_with_min_taxa - INFO - Argument,
———input_format: nexus

2021-03-01 16:06:56,295 - phyluce_align_get_only_loci_with_min_taxa - INFO - Argument,
—--log_path: /data/taxon-sets/all/log

2021-03-01 16:06:56,295 - phyluce_align_get_only_loci_with min_taxa - INFO - Argument
———output: /data/taxon-sets/all/mafft-nexus—-internal-trimmed-gblocks-clean-75p
2021-03-01 16:06:56,295 - phyluce_align_get_only_loci_with_min_taxa - INFO - Argument,
———percent: 0.75

2021-03-01 16:06:56,295 - phyluce_align_get_only_loci_with_min_taxa - INFO - Argument,
———taxa: 4

2021-03-01 16:06:56,296 - phyluce_align_get_only_loci_with _min_taxa - INFO - Argument
——-verbosity: INFO

2021-03-01 16:06:56,296 - phyluce_align_get_only_loci_with_min_taxa - INFO - Getting,
—alignment files

2021-03-01 16:06:56,534 - phyluce_align_get_only_loci_with_min_taxa - INFO - Copied,,

189 alignments of 189 total containing > 0.75 proportion of taxa (n = 3)
2021-03-01 16:06:56,534 - phyluce_align_get_only_loci_with_min_taxa - INFO - ======
—Completed phyluce_align_get_only_loci_with_min_taxa ======

The current directory structure should look like (I've collapsed a number of branches in the tree):

uce-tutorial
+— assembly.conf

+— taxon-sets
+— all
+— all-taxa-incomplete.conf
+— all-taxa-incomplete.fasta
+— all-taxa-incomplete.incomplete
+— exploded-fastas
+— log

(continues on next page)

40 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

+— mafft-nexus-edge-trimmed

+— mafft-nexus-internal-trimmed

+— mafft-nexus—-internal-trimmed-gblocks

+— mafft-nexus—-internal-trimmed-gblocks-clean

+— mafft-nexus-internal-trimmed-gblocks-clean-75p
+— uce-1008.nexus
+— uce-1014.nexus
+— uce-1039.nexus

+— uce-991.nexus

+— uce-search-results

Preparing data for downstream analysis

Now that we have our 75p data matrix completed, we can generate input files for subsequent phylogenetic analysis.
For the most part, I use RAXML or IQTree, both of which will take a phylip-formatted file as input. Formatting our
75p data into a phylip file for these programs is rather easy. To do that, run:

make sure we are in the correct directory
cd uce-tutorial/taxon-sets/all

build the concatenated data matrix
phyluce_align_concatenate_alignments \
-—alignments mafft-nexus—-internal-trimmed-gblocks—-clean-75p \
——output mafft-nexus-internal-trimmed-gblocks—-clean-75p-raxml \
——phylip \
-—-log-path log

The output from this program will look like:

2021-03-01 16:09:01,391 - phyluce_align_concatenate_alignments - INFQO - =========
—Starting phyluce_align_concatenate_alignments =========

2021-03-01 16:09:01,391 - phyluce_align_concatenate_alignments - INFO - Version: 1.7.0
2021-03-01 16:09:01,391 - phyluce_align_concatenate_alignments - INFO - Commit: None
2021-03-01 16:09:01,392 - phyluce_align_concatenate_alignments - INFO - Argument —-
—alignments: /data/taxon-sets/all/mafft-nexus-internal-trimmed-gblocks-clean-75p
2021-03-01 16:09:01,392 - phyluce_align_concatenate_alignments - INFO - Argument --—
—input_format: nexus

2021-03-01 16:09:01,392 - phyluce_align_concatenate_alignments - INFO - Argument --
—log_path: /data/taxon-sets/all/log

2021-03-01 16:09:01,392 - phyluce_align_concatenate_alignments - INFO - Argument --—
—nexus: False

2021-03-01 16:09:01,392 - phyluce_align_concatenate_alignments - INFO - Argument --—
—output: /data/taxon-sets/all/mafft-nexus-internal-trimmed-gblocks-clean-75p-raxml
2021-03-01 16:09:01,392 - phyluce_align_concatenate_alignments - INFO - Argument --
—phylip: True

2021-03-01 16:09:01,392 - phyluce_align_concatenate_alignments - INFO - Argument --
—verbosity: INFO

2021-03-01 16:09:01,393 - phyluce_align_concatenate_alignments - INFO - Reading input,
—alignments in NEXUS format

2021-03-01 16:09:01,393 - phyluce_align_concatenate_alignments - INFO - Getting,
—alignment files

2021-03-01 16:09:01,733 - phyluce_align_concatenate_alignments - INFO - Concatenating
—~files

(continues on next page)

3.3. Phyluce Tutorials 41

phyluce documentation, Release 1.7.0

(continued from previous page)

2021-03-01 16:09:01,796 - phyluce_align_concatenate_alignments - INFO - Writing,,
—concatenated alignment to PHYLIP format (with charsets)

2021-03-01 16:09:01,803 - phyluce_align_concatenate_alignments - INFO - =========
—Completed phyluce_align_concatenate_alignments ========

Attention: Charsets are now output by default for all data sets. You generally want these and the cost for them is
low.

The current directory structure should look like (I've collapsed a number of branches in the tree):

uce-tutorial
+— assembly.conf

+— taxon-sets
+— all
+— all-taxa-incomplete.conf
+— all-taxa-incomplete.fasta

+— all-taxa-incomplete.incomplete
+— exploded-fastas

+— log

+— mafft-nexus—-edge-trimmed

+— mafft-nexus—-internal-trimmed

+— mafft-nexus-internal-trimmed-gblocks

+— mafft-nexus—-internal-trimmed-gblocks-clean

+— mafft-nexus-internal-trimmed-gblocks-clean-75p

+— mafft-nexus—-internal-trimmed-gblocks-clean-75p-raxml
+— mafft-nexus—-internal-trimmed-gblocks—-clean-75p.charsets
+— mafft-nexus—-internal-trimmed-gblocks-clean-75p.phylip

+— uce-search-results

If you need to output concatenated data in NEXUS format, you can simply run the same program as above, but change
—-phylip to ——nexus, like:

make sure we are in the correct directory
cd uce-tutorial/taxon-sets/all

build the concatenated data matrix
phyluce_align_concatenate_alignments \
-—alignments mafft-nexus—-internal-trimmed-gblocks—-clean-75p \
——output mafft-nexus-internal-trimmed-gblocks—-clean-75p-raxml \
——nexus \
-—-log-path log

Downstream Analysis

The above data are ready to analyze in a program like RAXxML or IQTree. See the documentation for those programs
to learn how to use them.

If you are performing locus-based inference (e.g. so-called gene-tree, species-tree methods, you
can analyze the individual locus alignments present in the folder you created just prior to con-
catenation (e.g. mafft-nexus—internal-trimmed-gblocks—clean-75p). If you need

to convert those files into another format (by default, they are in NEXUS format), you can use

42 Chapter 3. Guide

https://github.com/amkozlov/raxml-ng
http://www.iqtree.org

phyluce documentation, Release 1.7.0

phyluce_align_convert_one_align_to_another. For performing analyses to infer a locus-tree
from individual alignments, you might look into a program like pargenes. You can also reasonably script IQTree to
do this on, for example, an HPC system (we do it using GNU Parallel to send each alignment to one compute core,
where we run [QTree on that alignment).

Next Steps

After completing the tutorial, you should have a reasonably good idea of how to use phyluce in a day-to-day situation.
If you want to know more about specifics, you can read through the Phyluce in Daily Use sections, which provide
additional detail. Also be sure to poke around the other programs that come with phyluce - short list of which you can
find in the List of Phyluce Programs.

3.3.2 Tutorial ll: Phasing UCE data

The following workflow derives from Andermann et al. 2018 (https://doi.org/10.1093/sysbio/syy039) and focuses on
phasing SNPs in UCE data.

To phase your UCE data, you need to have individual-specific “reference” contigs against which to align your raw
reads. Generally speaking, you can create these individual-specific reference contigs at several stages of the phyluce
pipeline, and the stage at which you choose to do this may depend on the analyses that you are running. That said, I
think that the best way to proceed uses edge-trimmed exploded alignments as your reference contigs, aligns raw reads
to those, and uses the exploded alignments and raw reads to phase your data.

Attention: We have not implemented code that you can use if you are trimming your alignment data with some
other approach (e.g. gblocks or trimal).

Exploding aligned and trimmed UCE sequences

Probably the best way to proceed (you can come up with other ways to do this) is to choose loci that have already been
aligned and edge-trimmed as the basis for SNP calling and haplotype phasing. The benefit of this approach is that the
individual-specific reference contigs you are inputting to the process will be somewhat normalized across all of your
individuals because you have already generated alignments from all of your UCE loci and trimmed the edges of these
loci.

To follow this approach, first proceed through the Edge trimming section of Tutorial I: UCE Phylogenomics. Then,
you can “explode” the directory of alignments you have generated to create separate FASTA files for each individual
using the following (this assumes your alignments are in mafft-nexus-edge-trimmed as in the tutorial).

explode the alignment files in mafft-nexus-edge-trimmed by taxon create a taxon-
—specific FASTA
phyluce_align_explode_alignments \

-—alignments mafft-nexus—edge-trimmed \

——input-format nexus \

——output mafft-nexus—edge-trimmed-exploded \

—-—by-taxon

The current directory structure should look like (I've collapsed a number of branches in the tree):

uce-tutorial
+— assembly.conf

+— taxon-sets

(continues on next page)

3.3. Phyluce Tutorials 43

https://github.com/BenoitMorel/ParGenes
http://www.iqtree.org
http://www.iqtree.org
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
https://doi.org/10.1093/sysbio/syy039
https://github.com/faircloth-lab/phyluce
http://molevol.cmima.csic.es/castresana/Gblocks.html
http://trimal.cgenomics.org

phyluce documentation, Release 1.7.0

(continued from previous page)

+— all
+— all-taxa-incomplete.conf
+— all-taxa-incomplete.fasta

+— all-taxa-incomplete.incomplete
+— exploded-fastas
+— log

+— mafft-nexus-edge-trimmed
+— mafft-nexus—-edge-trimmed-exploded

|

| +— alligator_mississippiensis.fasta
| +— anolis_carolinensis.fasta

| +— gallus_gallus.fasta

| +— mus_musculus.fasta

+— uce-search-results

You may want to get stats on these exploded-fastas by running something like the following:

get summary stats on the FASTAS
for i in mafft-nexus—-edge-trimmed-exploded/*.fasta;
do

&

phyluce_assembly_get_fasta_lengths —-—-input $i —--csv;
done

Creating a re-alignment configuration file

Before aligning raw reads back to these reference contigs using bwa, you have to create a configuration file, which
tells the program where the cleaned and trimmed fastq reads are stored for each sample and where to find the reference
FASTA file for each sample. The configuration file should look like in the following example and should be saved as
e.g. phasing.conf

[references]
alligator_mississippiensis:/Users/bcf/tmp/phyluce/mafft-nexus—edge-trimmed-exploded/
—alligator_mississippiensis.fasta
anolis_carolinensis:/Users/bcf/tmp/phyluce/mafft-nexus—-edge-trimmed-exploded/anolis_
—carolinensis.fasta
gallus_gallus:/Users/bcf/tmp/phyluce/mafft-nexus-edge-trimmed-exploded/gallus_gallus.
—fasta

mus_musculus: /Users/bef/tmp/phyluce/mafft-nexus—-edge-trimmed-exploded/mus_musculus.
—~fasta

[individuals]
alligator_mississippiensis:/Users/bcf/tmp/phyluce/clean-fastqg/alligator_
—mississippiensis/split-adapter—-quality-trimmed/
anolis_carolinensis:/Users/bcf/tmp/phyluce/clean-fastg/anolis_carolinensis/split—
—adapter—-quality-trimmed/
gallus_gallus:/Users/bcf/tmp/phyluce/clean-fastg/gallus_gallus/split—-adapter—quality-
—trimmed/

mus_musculus: /Users/bcef/tmp/phyluce/clean—-fastq/mus_musculus/split—-adapter—-quality-
—trimmed/

[flowcell]
alligator_mississippiensis:D1IHTMACXX
anolis_carolinensis:CODBPACXX
gallus_gallus:A8E3E
mus_musculus : CODBPACXX

44 Chapter 3. Guide

phyluce documentation, Release 1.7.0

[references]

In this section you simply state the sample ID (genus_speciesl) followed by a colon (:) and the full path to the
sample-specific FASTA library which was generated in the previous step.

[individuals]

In this section you give the complete path to the cleaned and trimmed reads folder for each sample.

Attention: The cleaned reads used by this program should be generated by illumiprocessor because the folder
structure of the cleaned reads files is assumed to be that of illumiprocessor . This means that the zipped fastq files
(fastq.gz) have to be located in a subfolder with the name split-adapter—-quality-trimmed within each
sample-specific folder.

[flowcell]

The flowcell section is meant to add flowcell information from the Illumina run to the header to the BAM file that
is created. This can be helpful for later identication of sample and run information. If you do not know the flowcell
information for the data you are processing, you can look inside of the fastq.gz file using a program like less. The
flowcell identifier is the set of digits and numbers after the 2nd colon.

@J00138:149:HT23LBBXX:8:1101:5589:1015 1:N:0:ATAAGGCG+CATACCAC

AAAAAAAAAN

Alternatively, you can enter any string of information here (no spaces) that you would like to help identify a given
sample (e.g. XXYYZZ).

Mapping reads against contigs

To map the fastq read files against the contig reference database for each sample, run the folliwing. This will use bwa
mem to map the raw reads to the “reference” contigs:

phyluce_snp_bwa_multiple_align \
-—config phasing.conf \
——output multialign-bams \
——cores 12 \
--log-path log \
——mem

This will produce an output along these lines

2016-03-09 16:40:22,628 - phyluce_snp_bwa_multiple_align - INFO - ============
—Starting phyluce_snp_bwa_multiple_align ============

2016-03-09 16:40:22,628 - phyluce_snp_bwa_multiple_align - INFO - Version: 1.5.0
2016-03-09 16:40:22,629 - phyluce_snp_bwa_multiple_align - INFO - Argument —--config: /
—path/to/phasing.conf

2016-03-09 16:40:22,629 - phyluce_snp_bwa_multiple_align - INFO - Argument --cores: 1
2016-03-09 16:40:22,629 - phyluce_snp_bwa_multiple_align - INFO - Argument --log_
—path: None

2016-03-09 16:40:22,629 - phyluce_snp_bwa_multiple_align - INFO - Argument --mem:
—False

(continues on next page)

3.3. Phyluce Tutorials 45

https://github.com/faircloth-lab/illumiprocessor/
https://github.com/faircloth-lab/illumiprocessor/

phyluce documentation, Release 1.7.0

(continued from previous page)

2016-03-09 16:40:22,629 - phyluce_snp_bwa_multiple_align
—remove_duplicates: False

2016-03-09 16:40:22,629 - phyluce_snp_bwa_multiple_align
—path/to/mapping_results

2016-03-09 16:40:22,629 - phyluce_snp_bwa_multiple_align
—subfolder: split-adapter-quality-trimmed

2016-03-09 16:40:22,629 - phyluce_snp_bwa_multiple_align
—verbosity: INFO

2016-03-09 16:40:22,630 - phyluce_snp_bwa_multiple_align
—~Starting phyluce_snp_bwa_multiple_align
2016-03-09 16:40:22,631 - phyluce_snp_bwa_multiple_align
—~filenames and creating output directories

2016-03-09 16:40:22,633 - phyluce_snp_bwa_multiple_align
——— Processing genus_speciesl
2016-03-09 16:40:22,633 - phyluce_snp_bwa_multiple_align
—files
2016-03-09
2016-03-09
—~file for
2016-03-09

16:40:22,636 - phyluce_snp_bwa_multiple_align
16:40:22,637 - phyluce_snp_bwa_multiple_align
genus_speciesl-READ]1.fastqg.gz

16:40:33,999 - phyluce_snp_bwa_multiple_align
—~file for genus_speciesl-READ2.fastqg.gz

2016-03-09 16:40:45,142 - phyluce_snp_bwa_multiple_align
—genus_speciesl

2016-03-09 16:41:33,195 - phyluce_snp_bwa_multiple_align
—genus_speciesl

2016-03-09 16:42:03,410 - phyluce_snp_bwa_multiple_align
—BAM for genus_speciesl

2016-03-09 16:42:49,518 - phyluce_snp_bwa_multiple_align
—duplicates from BAM for genus_speciesl

2016-03-09 16:43:26,917 - phyluce_snp_bwa_multiple_align
—~file for genus_speciesl-READ-singleton.fastqg.gz
2016-03-09 16:43:27,066 - phyluce_snp_bwa_multiple_align
—genus_speciesl

2016-03-09 16:43:27,293 - phyluce_snp_bwa_multiple_align
—genus_speciesl

2016-03-09 16:43:27,748 - phyluce_snp_bwa_multiple_align
—BAM for genus_speciesl

2016-03-09 16:43:28,390 - phyluce_snp_bwa_multiple_align
—duplicates from BAM for genus_speciesl

2016-03-09 16:43:30,633 - phyluce_snp_bwa_multiple_align
—genus_speciesl
2016-03-09 16:44:05,811 -
—genus_speciesl
2016-03-09 16:44:08,047 - phyluce_snp_bwa_multiple_align
——— Processing genus_species2

phyluce_snp_bwa_multiple_align

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -
INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

INFO -

Argument —--no_
Argument --output: /
Argument —-—

Argument —--

Finding fastq/fasta,

File type is fastg
Creating read index,,

Creating read index,
Building BAM for,,
Cleaning BAM for
Adding RG header to
Marking read,,
Creating read index,,
Building BAM for,
Cleaning BAM for
Adding RG header to
Marking read,,
Merging BAMs for,

Indexing BAM for,

Phasing mapped reads

In the previous step you aligned your sequence reads against the reference FASTA file for each sample. The results are
stored in the output folder in bam format. Now you can start the actual phasing of the reads. This will analyze and sort
the reads within each bam file into two separate bam files (genus_speciesl.0.bam and genus_speciesl.

1.bam).

The program is very easy to run and just requires the path to the bam files (output folder from previous mapping
program, /path/to/mapping_results) and the path to the configuration file, which is the same file as used in

46

Chapter 3. Guide

phyluce documentation, Release 1.7.0

the previous step (/path/to/phasing.conf). Then, run:

phyluce_snp_phase_uces \
—--config phasing.conf \
—-bams multialign-bams \
——output multialign-bams-phased-reads

The output will look something like the following

2018-07-27 09:58:35,963 - phyluce_snp_phase_uces
—phyluce_snp_phase_uces
2018-07-27 09:58:35,963 - phyluce_snp_phase_uces
2018-07-27 09:58:35,963 - phyluce_snp_phase_uces
—tmp/phyluce/multialign-bams

2018-07-27 09:58:35,963 - phyluce_snp_phase_uces
—bcf/tmp/phyluce/phasing.conf

2018-07-27 09:58:35,963 - phyluce_snp_phase_uces
—False

2018-07-27 09:58:35,963 - phyluce_snp_phase_uces
2018-07-27 09:58:35,963 - phyluce_snp_phase_uces
2018-07-27 09:58:35,964 - phyluce_snp_phase_uces
—bcf/tmp/phyluce/multialign-bams-phased-reads
2018-07-27 09:58:35,964 - phyluce_snp_phase_uces
2018-07-27 09:58:35,964 - phyluce_snp_phase_uces
—phyluce_snp_phase_uces
2018-07-27 09:58:35,964 - phyluce_snp_phase_uces
—creating output directories

2018-07-27 10:02:10,526 - phyluce_snp_phase_uces
—phyluce_snp_phase_uces ==

2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
—tmp/phyluce/multialign-bams

2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
—bcf/tmp/phyluce/phasing.conf

2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
—False

2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
—bcf/tmp/phyluce/multialign-bams-phased-reads
2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
2018-07-27 10:02:10,527 - phyluce_snp_phase_uces
—phyluce_snp_phase_uces
2018-07-27 10:02:10,528 - phyluce_snp_phase_uces
—creating output directories

2018-07-27 10:02:10,528 - phyluce_snp_phase_uces
—~alligator_mississippiensis ————————————-
2018-07-27 10:02:10,528 - phyluce_snp_phase_uces
—alligator_mississippiensis

2018-07-27 10:02:21,695 - phyluce_snp_phase_uces
—mississippiensis

2018-07-27 10:02:23,115 - phyluce_snp_phase_uces
—mississippiensis

2018-07-27 10:02:24,533 - phyluce_snp_phase_uces
—FASTQ file O

2018-07-27 10:02:24,583 - phyluce_snp_phase_uces
FASTQ file 1

2018-07-27 10:02:24,613 - phyluce_snp_phase_uces

i =
Tt

FASTO—f£37
1Yo T e

INFO

INFO
INFO

INFO

INFO

INFO

INFO

INFO

INFO
INFO

INFO

INFO

INFO
INFO

INFO

INFO

INFO

INFO

INFO

INFO
INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

= === Starting_

Version: git Obabcla
Argument —-bams: /Users/bcf/

Argument --config: /Users/
Argument —--conservative:
Argument --cores: 1

Argument --log_path: None
Argument --output: /Users/

Argument --verbosity: INFO
Starting,,

Getting input filenames and,

———————————————— Starting,,

Version: git Obabcla
Argument —-bams: /Users/bcf/

Argument --config: /Users/
Argument --conservative:
Argument --cores: 1

Argument —--log_path: None
Argument —--output: /Users/

Argument --verbosity: INFO
Starting,,

Getting input filenames and
————————————— Processing,,
Phasing BAM file for
Sorting BAM for alligator_
Sorting BAM for alligator_
Creating REF/ALT allele,
Creating REF/ALT allele,

Creating REF/ALT allele,

>3

unphas

(continues on next page)

3.3. Phyluce Tutorials

47

phyluce documentation, Release 1.7.0

(continued from previous page)

2018-07-27 10:02:24,643 - phyluce_snp_phase_uces - INFO - Creating REF/ALT allele
—FASTA file 0 from FASTQ O

2018-07-27 10:02:24,654 - phyluce_snp_phase_uces — INFO - Creating REF/ALT allele_
—FASTA file 1 from FASTQ 1

2018-07-27 10:02:24,662 — phyluce_snp_phase_uces — INFO - Creating REF/ALT allele_
—FASTA file unphased from FASTQ unphased

2018-07-27 10:02:24,673 - phyluce_snp_phase_uces - INFO - Checking for correct FASTA
—~files

2018-07-27 10:02:24,673 - phyluce_snp_phase_uces - INFO - Cleaning FASTA files
2018-07-27 10:02:24,681 - phyluce_snp_phase_uces - INFO - Balancing FASTA files
2018-07-27 10:02:24,682 - phyluce_snp_phase_uces - INFO - Symlinking FASTA files

The program automatically produces a consensus sequence for each of these phased bam files
(= allele sequence) and stores these allele sequences of all samples in a joined FASTA file
(joined_allele_sequences_all_samples.fasta). This allele FASTA is deposited in the subfolder
fastas within your output folder (e.g. /path/to/multialign-bams-phased-reads/fastas).

You can directly input that file (joined_allele_sequences_all_samples. fasta) back into the alignment
pipeline, like so:

phyluce_align_seqgcap_align \

--fasta /path/to/multialign-bams-phased-reads/fastas/joined_allele_sequences_all_
—samples.fasta \

——output PHASED-DATA mafft-nexus-edge-trimmed \

——taxa 4 \

—-—aligner mafft \

-—cores 12 \

——incomplete-matrix \

-—-log-path log

Following alignment, you can choose how you’d like to treat these data (e.g. internally trim, analyze, etc).

3.3.3 Tutorial lll: Harvesting UCE Loci From Genomes

In many cases, genomic data exist for some (or many) taxa, and you want to “harvest” those loci from the genome(s)
available to you for inclusion in a study. This tutorial is meant to explain how to do this. For this example, we’ll down-
load two genome sequences from web repositories, locate, and extract UCE loci from these genomes for subsequent
analysis.

The taxa we are working with will be:
* Gallus gallus

 Alligator mississippiensis

Starting directory structure

To keep things clear, we’re going to assume you are working in some directory, which I'll call uce-genome. We’ll be
working from the top of this directory in the steps below:

uce—genome

48 Chapter 3. Guide

phyluce documentation, Release 1.7.0

Download the data

You can download genome assemblies from any number of sources - some better than others. Here, we’re going to
download one genome assembly (chicken; galGal4) from the UCSC Genome Browser and another (alligator) from
NCBI. We're using two difference sources so you can see some of the differences in the process... and what you
might need to do in order to “clean up” a given genome sequence. We’ll start with the easy one.

chicken (galGal4)

The UCSC Genome Browser is a great resource for lots of data that is easy to find and easy to use. In particular, we’re
interested in the UCSC Genome Browser Downloads area, where you can find genome sequence, genome annotations,
etc. for many model (and non-model) taxa. In this case, we want the galGal4 genome sequence, which is the 4th
“official” assembly of the chicken genome sequence (AKA GCA_000002315.2). You can find this by navigating from
the UCSC Genome Browser Downloads to the Chicken section of the page. Under the galGal4 heading, click on Full
data set. This will take you to the data download page for galGal4 where there is a listing of all the data you can
download for the galGal4 assembly. We’re interested in the galGal4.2bit file, which is a compressed representation of
the genome in 2bit format. You can either click on this file name to download the file, or navigate to your uce- genome
folder and:

$ cd uce-genome

$ mkdir galGal4

$ cd galGald

wget http://hgdownload.soe.ucsc.edu/goldenPath/galGald/bigZips/galGald.2bit

This put a 2bit file in our uce-genome directory, so that our directory structure looks like:

uce—genome
+— galGal4
+— galGaléd.2bit

There are various utilities for dealing with 2bit files that you can download as part of the Kent Source Archive, a set
of programs for dealing with genome-scale data. Probably the most important of these are faToTwoBit, which we use
below; rwoBitInfo, which gives us information on a given 2bit file; and rwoBitToFa which converts a 2bit file back to
FASTA format. If we run twoBitInfo against galGal4.2bit, we see something like:

$ cd uce-genome/galGali4
$ twoBitInfo galGald.2bit sizes.tab

$ head -n 5 sizes.tab

chrl 195276750

chrl0 19911089
chr10_AADN03010416_random 11080
chrl10_AADN03010420_random 8415
chrl10_JH375184_random 3009

which shows us the scaffolds/contigs and their sizes.

alligator (allMis1)

Although you can get the alligator genomes from UCSC, we’ll download it from NCBI, so that you can see the
differences in the process/data. Explaining NCBI is beyond the scope of what we’re doing here, so we’ll just navigate
to the NCBI alligator genome assembly page. If you click the Assembly link on the right hand side of the page (under
“Related information”), this will take you to the suite of assemblies for alligator.

3.3. Phyluce Tutorials 49

https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://genome.ucsc.edu/downloads
https://genome.ucsc.edu/downloads
http://hgdownload.soe.ucsc.edu/downloads.html#chicken
http://hgdownload.soe.ucsc.edu/goldenPath/galGal4/bigZips/
http://hgdownload.soe.ucsc.edu/goldenPath/galGal4/bigZips/
https://genome.ucsc.edu/goldenpath/help/twoBit.html
https://genome.ucsc.edu/goldenpath/help/twoBit.html
http://hgdownload.soe.ucsc.edu/admin/exe/
http://hgdownload.soe.ucsc.edu/goldenPath/allMis1/bigZips/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/genome/13409
http://www.ncbi.nlm.nih.gov/assembly?LinkName=genome_assembly&from_uid=13409
http://www.ncbi.nlm.nih.gov/assembly?LinkName=genome_assembly&from_uid=13409

phyluce documentation, Release 1.7.0

We’ll download the Algmis_Hirise_I1.0 assembly, which is an improvement on the original assembly. To
do this, click on the Algmis_Hirise_1.0 link, and look for the Download the GenBank assembly link on
the top right corner of the next page. This will take you to an FTP page, where you want to download
GCA_001541155.1_Algmis_Hirise_1.0_genomic.fna.gz. You can do this by clicking on the link or by:

$ cd uce-genome
$ mkdir allMis2
$ cd allMis2

wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/541/155/GCA_001541155.1_Algmis_Hirise_1.0/GCA_
001541155.1_Algmis_Hirise_1.0_genomic.fna.gz

This put a gzipped fasta file in our uce-genome/allMis2 directory, so that our directory structure looks like:

uce-genome
+— allMis2
| +— GCA_001541155.1_Algmis_Hirise_1.0_genomic.fna.gz
+— galGali4

+— galGald.2bit

+— sizes.tab

Now, we need to unzip this and have a look at the file:

$ cd uce—-genome/allMis?2
$ gunzip GCA_001541155.1_Algmis_Hirise_1.0_genomic.fna.gz

take a look at the contents of this file:
$ head -n 1 GCA_001541155.1_Algmis_Hirise_1.0_genomic.fna
>LPUV01000001.1 Alligator mississippiensis ScZkoYb_3522, whole genome shotgun sequence

Note that the header has a lot of text in it, and this text is not always good. We’re going to convert this file to 2bit
format using faToTwoBit from the Kent Source Archive, which will remove everything following the first space in the
header line:

$ faToTwoBit GCA_001541155.1_Algmis_Hirise_1.0_genomic.fna allMis2.2bit
$ twoBitInfo allMis2.2bit sizes.tab

$ head -n 5 sizes.tab

LPUV01000001.1 1279

LPUV01000002.1 4883
LPUV01000003.1 1105
LPUV01000004.1 22955
LPUV01000005.1 1137523

Now that we’ve converted the fasta file to 2bit format, we can delete the fasta file:

$ rm GCA_001541155.1_Algmis_Hirise_1.0_genomic.fna

And your directory structure should look like:

uce-genome
+— allMis2
+— allMis2.2bit
+— sizes.tab
+— galGali4
+— galGal4d.2bit
+— sizes.tab

50 Chapter 3. Guide

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_001541155.1_Algmis_Hirise_1.0
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/541/155/GCA_001541155.1_Algmis_Hirise_1.0/GCA_001541155.1_Algmis_Hirise_1.0_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/541/155/GCA_001541155.1_Algmis_Hirise_1.0/GCA_001541155.1_Algmis_Hirise_1.0_genomic.fna.gz
http://hgdownload.soe.ucsc.edu/admin/exe/

phyluce documentation, Release 1.7.0

Attention: It’s easiest to use 2bir files of each genome you want to search for UCE loci.

Finding UCE loci

Now that we’ve downloaded our genome assemblies, it’s time to find those contigs/scaffolds in the assembly that
contain UCE loci.

Get the UCE probes

To do that, we need to get the UCE probe set we want to search for into our directory. Here, we’ll search for the UCE
5k probe set. However, you can use whichever probe set you like - you just need to know the path to this file.

> cd uce—genome

download the probe set

wget https://raw.githubusercontent.com/faircloth-lab/uce-probe-sets/master/uce-5k-
—probe-set/uce-5k-probes.fasta

Now, our directory structure looks like:

uce—-genome
+— allMis2

+— allMis2.2bit
+— sizes.tab

+— galGali4

+— galGal4d.z2bit
+— sizes.tab

+— uce-5k-probes. fasta

Align the probes to the genomes

We need to align the probes to the genome sequences. The program that we are going to run assumes that each 2bit
genome file is in it’s own directory (which we have ensured, above).

Attention: If you use some other organizational structure, you still need to ensure that each genome sequence is
in it’s own directory. So, if you have some directory genomes, the genomes must be organized within that folder
like:

genomes
+— allMis2
| +— allMis2.2bit
+— galGali4

+— galGal4d.z2bit

Now, we need to think of some name for the database to create (here tutorial3.sqlite), the name of an output in which
to store the lastz search results, the path to the genome sequences, the name of the genome sequences, the path to the
probe file, and a number of compute cores to use:

> cd uce—genome

run the search

(continues on next page)

3.3. Phyluce Tutorials 51

phyluce documentation, Release 1.7.0

(continued from previous page)

> phyluce_probe_run_multiple_lastzs_sqglite \
—--db tutorial3.sglite \
——-output tutorial3-genome-lastz \
—-scaffoldlist galGal4 allMis2 \
—-—-genome-base-path ./ \
—-probefile /nfs/datal/uce-probe-sets/uce-5k-probe-set/uce-5k-probes.fasta \
——cores 12

The program will create some output that looks like:

Running against galGalé4.2bit
Running with the --huge option. Chunking files into 10000000 bp...
/tmp/tmptXuplD.lastz

< .. snip .. >

Cleaning up the chunked files...

Cleaning /home/bcf/tmp/uce—-genome/tutorial3—genome—-lastz/uce-5k-probes.fasta_v_
—galGal4d.lastz

Creating galGal4d table

Inserting data to galGal4 table

Running against allMis2.2bit

Running with the --huge option. Chunking files into 10000000 bp...
Running the targets against 109 queries...

/tmp/tmpuuHOpS. fasta

< .. snip .. >

Cleaning up the chunked files...

Cleaning /home/bcf/tmp/uce-genome/tutorial3—-genome—-lastz/uce-5k-probes.fasta_v_
—allMis2.lastz

Creating allMis2 table

Inserting data to allMis2 table

The directory structure should now look like this:

uce-genome
+— allMis2

+— allMis2.2bit

+— sizes.tab

+— galGali4

+— galGal4d.z2bit

+— sizes.tab

+— tutorial3-genome-lastz

+— uce-5k-probes.fasta_v_allMis2.lastz.clean
+— uce-Sk-probes.fasta_v_galGal4.lastz.clean
+— tutorial3.sqglite

+— uce-5k-probes. fasta

Extracting FASTA sequence matching UCE loci from genome sequences

Once you have run the search, you can extract the loci identified during the search from each respective genome
sequence plus some sequence flanking each locus (at a distance you can specify). Before you do that, however, you
need to create a configuration file that tells the program where to find each genome. In the case above, that file would

52 Chapter 3. Guide

phyluce documentation, Release 1.7.0

look like so (the full path to my working directory is /home/bcf/tmp/uce-genome):

[scaffolds]
galGald:/home/bcf/tmp/uce-genome/galGald/galGald.2bit
allMis2:/home/bcf/tmp/uce-genome/allMis2/allMis2.2bit

Attention: Be careful to make sure that your capitalization is consistent with your file names.

With that file created as genomes.conf, our directory structure looks like:

uce—-genome
+— allMis2

+— allMis2.2bit

+— sizes.tab

+— galGal4

+— galGal4d.2bit

+— sizes.tab

+— genomes.conf

+— tutorial3-genome-lastz

+— uce-5k-probes.fasta_v_allMis2.lastz.clean
+— uce-5S5k-probes.fasta_v_galGal4.lastz.clean
+— tutorial3.sqglite

+— uce-5k-probes.fasta

Now, we can extract FASTA data from each genome for each UCE locus. To do this, we need to input the path to the
lastz files from above, the path to the conf file we just created, the amount of flanking sequence (to each side) that
we would like to slice, a name pattern, matching the lastz files that we would like to use, and the name of the output
directory we want to create:

phyluce_probe_slice_sequence_from_genomes \
—-lastz tutorial3-genome-lastz \
—-conf genomes.conf \
-—flank 500 \
——name—-pattern "uce-5k-probes.fasta_v_{}.lastz.clean" \
—-—output tutorial-genome-fasta

You should see output similar to:

2016-06-01 16:02:18,907 - Phyluce - INFO - =========== === Starting Phyluce:
—~Slice Sequence

2016-06-01 16:02:18,908 - Phyluce - INFO - ——————————————————— Working on galGalé,
—genome ———————————————————

2016-06-01 16:02:18,908 - Phyluce - INFO - Reading galGal4 genome

2016-06-01 16:02:28,036 - Phyluce - INFO - galGal4: 4966 uces, 35 dupes, 4931 non-
—dupes, 2 orient drop, 40 length drop, 4889 written

2016-06-01 16:02:28,036 - Phyluce - INFO - ——————————————————— Working on allMis2 |
—genome ———————————————————

2016-06-01 16:02:28,037 - Phyluce - INFO - Reading allMis2 genome

2016-06-01 16:02:37,230 - Phyluce - INFO - allMis2: 4830 uces, 7 dupes, 4823 non-

—dupes, 2 orient drop, 3 length drop, 4818 written

And, your directory structure should look like:

uce-genome
+— allMis2

(continues on next page)

3.3. Phyluce Tutorials 53

phyluce documentation, Release 1.7.0

(continued from previous page)

+— allMis2.2bit

+— sizes.tab

+— galGali4

+— galGal4d.2bit

+— sizes.tab

+— genomes.conf

+— tutorial3-genome-lastz

+— uce-5k-probes.fasta_v_allMis2.lastz.clean
+— uce-S5k-probes.fasta_v_galGal4.lastz.clean
+— tutorial3.sqglite

+— tutorial-genome-fasta

+— allmis2.fasta

+— galgald.fasta

+— uce-5k-probes.fasta

The UCE contig sequence are in each respective file within tutorial-genome-fasta.

Using the extracted sequences in downstream analyses

The easiest way for you to use the extracted sequences is to symlink them into an appropriate contigs folder that
resulted from a PHYLUCE assembly process and then proceed with the Extracting UCE loci procedure.

For more information on the structure of this folder, look at the Assemble the data section of Tutorial I: UCE Phyloge-
nomics for more information.

Attention: Although we have already extracted the UCE loci from each genome sequence and even
though it seems redundant to go back through the Extracting UCE loci process, this is the best path
forward.

3.3.4 Tutorial IV: Identifying UCE Loci and Designing Baits To Target Them

The first few tutorials have given you a feel for how to perform phylogenetic/phylogeographic analyses using existing
probe sets, new data, and genomes. However, what if you are working on a set of organisms without a probe set
targeting conserved loci? How do you identify those loci and design baits to target them? This Tutorial shows you
how to do that.

In the examples below, we’ll follow a UCE identification and probe design workflow using data from Coleoptera
(beetles). Although you can follow the entire tutorial from beginning to end, I’ve also made the BAM files containing
mapped reads available, which lets you skip the computationally exepensive step of performing read simulation and
alignment.

Starting directory structure

To keep things clear, we’re going to assume you are working in some directory, which I'll call uce-coleoptera. We’ll
be working from the top of this directory in the steps below:

uce-coleoptera

54 Chapter 3. Guide

https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

Data download and preparation

Download the genomes

Attention: You do not neccessarily need to do this as part of this tutorial for UCE identification and probe design
- If you only want to follow the steps for locus identification (skipping probe design and in-silico testing), you can
simply download the prepared FASTQ/BAM files from figshare.

Make a directory to hold the genome sequences:

> mkdir genomes
> cd genomes

Now, get the genome sequences:

Anoplophora glabripennis (Asian longhorned beetle)
> wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/390/285/GCA_000390285.1_Agla_1.
—0/GCA_000390285.1_Agla_1.0_genomic.fna.gz

Agrilus planipennis (emerald ash borer)
> wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/699/045/GCA_000699045.1_Apla_1.
—~0/GCA_000699045.1_Apla_1.0_genomic.fna.gz

Leptinotarsa decemlineata (Colorado potato beetle)
> wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/500/325/GCA_000500325.1_Ldec_1.
—5/GCA_000500325.1_Ldec_1.5_genomic.fna.gz

Onthophagus taurus (beetles)
> wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/648/695/GCA_000648695.1 Otau_1.
—0/GCA_000648695.1_0Otau_1.0_genomic.fna.gz

Dendroctonus ponderosae (mountain pine beetle)
> wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/355/655/GCA_000355655.1
—DendPond_male_1.0/GCA_000355655.1_DendPond_male_1.0_genomic.fna.gz

Tribolium castaneum (red flour beetle)
> wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/002/335/GCA_000002335.2_Tcas_3.
—0/GCA_000002335.2_Tcas_3.0_genomic.fna.gz

Mengenilla moldrzyki (twisted-wing parasites) [Outgroup]
> wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/281/935/GCA_000281935.1_Memo_1.
—~0/GCA_000281935.1_Memo_1.0_genomic.fna.gz

You need to unzip all of the genome sequences

> gunzip *

Finally, your directory structure should look something like:

uce—-coleoptera
+— genomes
+— GCA_000002335.2_Tcas_3.0_genomic. fna
+— GCA_000281935.1_Memo_1.0_genomic. fna
+— GCA_000355655.1_DendPond_male_1.0_genomic. fna
+— GCA_000390285.1_Agla_1.0_genomic.fna

(continues on next page)

3.3. Phyluce Tutorials 55

https://dx.doi.org/10.6084/m9.figshare.3487349

phyluce documentation, Release 1.7.0

(continued from previous page)

+— GCA_000500325.1_Ldec_1.5_genomic.fna
+— GCA_000648695.1_0Otau_1.0_genomic.fna
+— GCA_000699045.1_Apla_1.0_genomic. fna

Cleanup the genome sequences

Attention: You do not neccessarily need to do this as part of this tutorial for UCE identification and probe design
- If you only want to follow the steps for locus identification (skipping probe design and in-silico testing), you can
simply download the prepared FASTQ/BAM files from figshare.

When you get genome sequences from NCBI, the FASTA headers of most scaffold/contigs contain a lot of extra cruft
that can cause problems with some of the steps in the UCE identification and probe design workflow. I usually remove
the extra stuff, maintaining only the accession number information for each contig / scaffold. To do that, I use a little
python script that looks like the following:

from Bio import SeqIO
with open ("Name_of_ Genome_File.fna", "rU") as infile:
with open ("outfileName.fasta", "w") as outf:
for seqg in SeqlO.parse(infile, 'fasta'):
seg.name = ""
seq.description = ""
outf.write (seq.format ('fasta'))

For these genome assemblies, the important bits are in the FASTA header just before the space in the name. The code
above basically keeps this information before the space and discards the remaining FASTA header information.

In the case of the genomes above, here are the commands I ran (note also that this creates an output file with a different
name from the input file):

from Bio import SeqgIO

Anoplophora glabripennis (Asian longhorned beetle)
with open ("GCA_000390285.1_Agla_1.0_genomic.fna", "rU") as infile:
with open("anoGlal.fasta", "w") as outf:
for seq in SeqlIO.parse(infile, 'fasta'):
seqg.name = ""
seq.description = ""
outf.write (seq.format ('fasta'))

Agrilus planipennis (emerald ash borer)
with open ("GCA_000699045.1 _Apla_1.0_genomic.fna", "rU") as infile:
with open("agrPlal.fasta", "w") as outf:
for seq in SeqlIO.parse(infile, 'fasta'):
seg.name = ""
seq.description = ""
outf.write(seqg.format ('fasta'))

Dendroctonus ponderosae (mountain pine beetle)
with open ("GCA_000355655.1_DendPond_male_1.0_genomic.fna", "rU") as infile:
with open ("denPonl.fasta", "w") as outf:
for seq in SeqlIO.parse(infile, 'fasta'):
seqg.name = ""

(continues on next page)

56 Chapter 3. Guide

https://dx.doi.org/10.6084/m9.figshare.3487349

phyluce documentation, Release 1.7.0

(continued from previous page)

seq.description = ""
outf.write (seq.format ('fasta'))

Leptinotarsa decemlineata (Colorado potato beetle)
with open ("GCA_000500325.1_Ldec_1.5_genomic.fna", "rU") as infile:
with open ("lepDecl.fasta", "w") as outf:
for seq in SeqlIO.parse(infile, 'fasta'):
seqg.name = ""
seq.description = ""

outf.write(seq.format ('fasta'))

Mengenilla moldrzyki (twisted-wing parasites) [Outgroup]
with open ("GCA_000281935.1_Memo_1.0_genomic.fna", "rU") as infile:
with open ("menMoll.fasta", "w") as outf:
for seq in SeqlIO.parse(infile, 'fasta'):
seqg.name = ""
seq.description = ""

outf.write(seq.format ('fasta'))

Onthophagus taurus (beetles)
with open ("GCA_000648695.1_Otau_1.0_genomic.fna", "rU") as infile:
with open ("ontTaul.fasta", "w") as outf:
for seq in SeqlIO.parse(infile, 'fasta'):
seqg.name = ""
seq.description = ""

outf.write(seqg.format ('fasta'))

Tribolium castaneum (red flour beetle)
with open ("GCA_000002335.2_Tcas_3.0_genomic.fna", "rU") as infile:
with open("triCasl.fasta", "w") as outf:
for seq in SeqlIO.parse(infile, 'fasta'):
seqg.name = ""
seq.description = ""

outf.write(seq.format ('fasta'))

Now, you can remove the original files downloaded from NCBI:

rm *.fna

And, your directory structure should look something like:

uce-coleoptera

+— genomes
+— anoGlal. fasta
+— agrPlal.fasta
+— denPonl. fasta
+— lepDecl. fasta
+— menMoll. fasta
+— ontTaul. fasta
+— triCasl.fasta

Put genomes in their own directories

Because of some historical reasons (and how I organize our lab data), each genome sequence needs to be in its own
directory. We can do that pretty easily by running:

3.3. Phyluce Tutorials 57

phyluce documentation, Release 1.7.0

> cd uce-coleoptera
> cd genomes
> for critter in *; do mkdir crit

t
o

o\
*

; mv Scritter critter%.x}; done

Now the directory structure looks like:

uce-coleoptera
+— genomes
+— agrPlal
| +— agrPlal.fasta
+— anoGlal
| +— anoGlal. fasta
+— denPonl
| +— denPonl. fasta
+— lepDecl
| +— lepDecl.fasta
+— menMoll
| +— menMoll. fasta
+— ontTaul
| +— ontTaul. fasta
+— triCasl
+— triCasl.fasta

Convert genomes to 2bit format

Later during the workflow, we’re going to need to have our genomes in 2bit format, which is a binary format for
genomic data that is easier and faster to work with than FASTA format. We’ll use a BASH script to convert all of the
sequences, above, to 2bit format:

> cd uce-coleoptera

> cd genomes

> for critter in *; do faToTwoBit Scritter/Scritter.fasta Scritter/S{critter%.*/.2bit;
— done

Now the directory structure looks like:

uce—coleoptera
+— genomes

+— agrPlal
+— agrPlal.2bit
+— agrPlal.fasta
+— anoGlal
+— anoGlal.2bit
+— anoGlal. fasta
+— denPonl
+— denPonl.2bit
+— denPonl. fasta
+— lepDecl
+— lepDecl.2bit
+— lepDecl.fasta
+— menMoll
+— menMoll.2bit
+— menMoll. fasta
+— ontTaul

+— ontTaul.2bit

(continues on next page)

58 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

+— ontTaul. fasta
+— triCasl

+— triCasl.2bit

+— triCasl.fasta

Simulate reads from genomes

Attention: You do not neccessarily need to take this step as part of the tutorial - you can simply download
prepared, simulated FASTQ files from figshare.

In order to locate UCE loci across a selection of different genomes, we’re going to align reads from each taxon, above,
to a reference genome sequence (the “base” genome sequence) using a permissive raw read aligner. You can use reads
from low-coverage, genome scans or you can use reads simulated from particular genomes. In this tutorial, we’re
going to use this latter approach and simulate reads (without sequencing error) from the genomes that we will align to
the base genome. To accomplish this, we’ll use art, which is a robust read simulator that is reasonably flexible.

Because we’re using simulated reads to locate UCE loci, we want to turn off the built-in feature of art that adds some
sequencing error to simulated reads. This results in a general form of the call to art that looks like:

> art_illumina \
—-paired \
-—-in ~/path/to/input/genome.fasta \
-—out prefix-of-output-file \
——len 100 \
——fcov 2 \
——-mflen 200 \
——sdev 150 \
-ir 0.0 -ir2 0.0 -dr 0.0 -dr2 0.0 -gs 100 -gs2 100 -na

This simulates reads from the —in genome.fasta that are 100 bp in length, cover the genome randomly to roughly 2X,
have an insert size of 200 bp, and have an inserts size standard deviation of 150. The last line turns off the simulation
of sequencing error in each of these reads and also turns off the creation of an alignment file showing where the reads
came from in the genome sequence.

In the case of the Coleoptera genomes you downloaded, here are the commands I ran to simulate the read data that
we will use in the next step (note also that this creates an output file with a different name from the input file). First,
create a directory to hold the simulated read data:

> cd uce-coleoptera
> mkdir reads
> cd reads

Then, simulate the reads using art:

> art_illumina \

——paired \

—--in ../genomes/agrPlal/agrPlal.fasta \

——out agrPlal-pel0OO-reads \

--len 100 --fcov 2 —--mflen 200 --sdev 150 —-ir 0.0 -ir2 0.0 -dr 0.0 -dr2 0.0 -gs_,
—~100 -gs2 100 -na

> art_illumina \

(continues on next page)

3.3. Phyluce Tutorials 59

https://ndownloader.figshare.com/files/5513204
http://www.niehs.nih.gov/research/resources/software/biostatistics/art/

phyluce documentation, Release 1.7.0

(continued from previous page)

——paired \
../genomes/anoGlal/anoGlal.fasta
—-out anoGlal-pel0OO-reads \
——len 100 —-—-fcov 2 —--mflen 200 —--sdev
—~100 -gs2 100 -na

—-—in

> art_illumina \

——-paired \
../genomes/denPonl/denPonl. fasta

——out denPonl-pelO0-reads \

——len 100 —--fcov 2 —--mflen 200 —--sdev
—100 —gs2 100 —-na

-—in

> art_illumina \

——paired \
../genomes/lepDecl/lepDecl.fasta

——out lepDecl-pel0O-reads \

——len 100 —-—-fcov 2 —--mflen 200 --sdev
—100 -gs2 100 —-na

—-—in

> art_illumina \

——paired \
../genomes/ontTaul/ontTaul.fasta

——out ontTaul-pel0O0-reads \

—-—len 100 —--fcov 2 —-—mflen 200 —--sdev
—~100 -gs2 100 -na

—-—in

150 -ir 0.0 -ir2 0.0 -dr 0.0 -dr2 0.0 -gs_

150 -ir 0.0 -ir2 0.0 -dr 0.0 -dr2 0.0 -gs,_

150 -ir 0.0 -ir2 0.0 -dr 0.0 -dr2 0.0 -gs_,

150 -ir 0.0 -ir2 0.0 -dr 0.0 -dr2 0.0 -gs,_,

Now, you should see 2 read files for each taxon. We are going to “break” the pairs by merging the read information
together, then we are going to zip the resulting file that contains the R/ and R2 data. We can accomplish this pretty

easily using a quick BASH script:

Attention: Note that we’ve dropped menMoll from the read simulation process. This is largely because it is an
outgroup to beetles. We’ll use it later, when we’re performing in silico tests of the UCE bait set.

for critter in agrPlal anoGlal denPonl lepDecl ontTaul;

do
echo "working on Scritter";
touch Scritter-pell0-reads.fqg;
cat Scritter-pelOO-readsl.fq > Scrit
cat Scritter-pel00-reads2.fqg >> Scr
rm Scritter-pelOO-readsl.fq;
rm Scritter-pelOO0-reads2.fq;
gzip Scritter-pelOO-reads.fqg;
done;

ter-pelOO-reads.fqg;
itter-pel00-reads.fq;

If we take a look at our directory structure, it should look like:

uce-coleoptera

+— genomes (collapsed)

+— reads
+— anoGlal-pelO0-reads.fq.gz
+— agrPlal-pel00-reads.fqg.gz
+— denPonl-pel00-reads.fqg.gz
+— lepDecl-pel00-reads.fqg.gz

(continues on next page)

60

Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

+— ontTaul-pelO0-reads.fqg.gz

Read alignment to the base genome

Attention: You do not neccessarily need to run this step as part of the tutorial - you can simply download the
prepared, BAM files from figshare.

Because we also provide the BAM files created below, you can choose to just start with the BAM files in the
Conserved locus identification section.

Prepare the base genome

Now that we have read data representing each of our exemplar taxa, we need to align these reads to the “base” genome
sequence, in this case the genome sequence of Tribolium castaneum (aka triCasl). We selected this assembly as the
“base” genome because of it’s age (i.e., better-assembled) and level of annotation.

We will perform the read alignments to triCas! using the permissive read aligner, stampy, which works well when
aligning sequences to a divergent reference sequence. Hoever, before running the alignments, we need to prepare the
base genome. And, before we do that, let’s create a direcetory to work in:

> cd uce-coleoptera
> mkdir base
> cd base

Now, let’s copy the base genome to this directory (for simplicity):

> cp ../genomes/triCasl.fasta ./

If we take a look at our directory structure, it now looks like:

uce-coleoptera
+— base

+— triCasl.fasta
+— genomes
+— agrPlal
+— agrPlal.2bit
+— agrPlal.fasta
+— anoGlal
+— anoGlal.2bit
+— anoGlal. fasta
+— denPonl
+— denPonl.2bit
+— denPonl. fasta
+— lepDecl
+— lepDecl.2bit
+— lepDecl. fasta
+— menMoll
+— menMoll.2bit
+— menMoll. fasta
+— ontTaul
+— ontTaul.2bit
+— ontTaul. fasta

(continues on next page)

3.3. Phyluce Tutorials 61

https://ndownloader.figshare.com/files/5513489
http://www.well.ox.ac.uk/project-stampy

phyluce documentation, Release 1.7.0

(continued from previous page)

+— triCasl
+— triCasl.2bit
+— triCasl.fasta
+— reads
+— anoGlal-pel00-reads
+— agrPlal-pel00-reads
+— denPonl-pel00-reads
+— lepDecl-pel00-reads
+— ontTaul-pel00-reads

Now, we need to run the commands to prepare the triCasl genome for use with stampy:

> cd uce-coleoptera

> cd base

> stampy.py —--species="tribolium-castaneum" --assembly="triCasl" -G triCasl triCasl.
—~fasta

> stampy.py -g triCasl -H triCasl

If we look at our directory structure, it should look like:

uce—coleoptera

+— base
+— triCasl.fasta
+— triCasl.sthash
+— triCasl.stidx

+— genomes (collapsed)

+— reads
+— anoGlal-pelO0-reads
+— agrPlal-pel00-reads
+— denPonl-pel00-reads
+— lepDecl-pelO0-reads
+— ontTaul-pel00-reads

Align reads to the base genome

Attention: You do not neccessarily need to run this step as part of the tutorial - you can simply download the
prepared, BAM files from figshare.

Because we also provide the BAM files created below, you can choose to just start with the BAM files in the
Conserved locus identification section.

Now that we’ve prepared our base genome, we need to perform the actual alignment of the simulated reads to the base
genome. And, before we do that, let’s create a directory to hold the resulting alignments:

> cd uce—-coleoptera
> mkdir alignments

Our resulting directory structure should now look like:

uce-coleoptera

+— alignments

+— base

| +— triCasl. fasta

(continues on next page)

62 Chapter 3. Guide

https://ndownloader.figshare.com/files/5513489

phyluce documentation, Release 1.7.0

(continued from previous page)

+— triCasl.sthash
+— triCasl.stidx

+— genomes (collapsed)

+— reads
+— anoGlal-pel00-reads
+— agrPlal-pel00-reads
+— denPonl-pel00-reads
+— lepDecl-pel00-reads
+— ontTaul-pel00-reads

Now, we need to perform the alignments on a taxon-by-taxon basis (and/or you can run these in parallel using HPC).
To do this easily (and on a local computer) we can use a BASH script to run the alignments serially:

Warning: Note that I am using 16 physical CPU cores ($cores) to do this work. You need to use the number of
physical cores available on your machine.

export cores=16

export base=triCasl

export base_dir=$HOME/uce-coleoptera/alignments
for critter in agrPlal anoGlal denPonl lepDecl ontTaul;
do
export reads ritter-pel00-reads.fq.gz;
mkdir -p Sbase dir/Scritter;
cd $base_dir/Scritter;
stampy.py —-maxbasequal 93 -g ../../base/Sbase -h ../../base/Sbase \
——substitutionrate=0.05 -tScores —--insertsize=400 -M \
../../reads/Sreads | samtools view —-Sb — > Scritter—to—-S$hase.bam;
done;

This code basically loops over each exemplar genomes, aligns the reads to the base genome sequence, and converts
the resulting output to BAM format (which is a binary, compressed version of SAM format).

When the alignments have completed, your directory structure should look something like:

uce—coleoptera
+— alignments
+— anoGlal
| +— anoGlal-to-triCasl.bam
+— agrPlal
| +— agrPlal-to-triCasl.bam
+— denPonl
| +— denPonl-to-triCasl.bam
+— lepDecl
| +— lepDecl-to-triCasl.bam
+— ontTaul
+— ontTaul-to-triCasl.bam
+— base
+— triCasl.fasta
+— triCasl.sthash
+— triCasl.stidx
+— genomes (collapsed)
+— reads
+— anoGlal-pel00-reads
+— agrPlal-pel00-reads

(continues on next page)

3.3. Phyluce Tutorials 63

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf

phyluce documentation, Release 1.7.0

(continued from previous page)

+— denPonl-pel00-reads
+— lepDecl-pel00-reads
+— ontTaul-pel00-reads

Now, these BAM files are pretty large because they contain all mapped as well as all unmapped reads. We want to
remove those unmapped reads, which will also reduce file-size. We can do that using samtools view and a BASH
script. We’re also going to create a directory named al/ and symlink all of the reduced BAM files to this directory.

Warning: The script, as-written, removes the BAM files containing both mapped and unmapped reads. If you
don’t want to do this, remove the rm $critter/$critter-to-triCasl.bam; line.

cd uce-coleoptera

cd alignments

mkdir all

for critter in agrPlal anoGlal denPonl lepDecl ontTaul;
do

vV V. V V

samtools view -h -F 4 -b Scritter/Scritter—to-triCasl.bam > Scritter/Scritter—
—to-triCasl1l-MAPPING.bam;
rm Scritter/Scritte
1n -s ../Scritter/s
—MAPPING.bam;
done;

—to-triCasl.bam;
‘ritter-to-triCasl-MAPPING.bam all/Scritter—-to-triCasl-

Now, your directory structure should look something like:

uce—-coleoptera
+— alignments
+— anoGlal
| +— anoGlal-to-triCas1-MAPPING.bam
+— all
| +— agrPlal-to-triCasl-MAPPING.bam -> ../agrPlal/agrPlal-to-triCasl-MAPPING.

—bam
| | +— anoGlal-to-triCasl-MAPPING.bam —-> ../anoGlal/anoGlal-to-triCasl1-MAPPING.
—bam
| | +— denPonl-to-triCasl-MAPPING.bam -> ../denPonl/denPonl-to-triCasl-MAPPING.
—bam
| | +— lepDecl-to-triCasl-MAPPING.bam —-> ../lepDecl/lepDecl-to-triCasl-MAPPING.
—bam
| | +— ontTaul-to-triCasl-MAPPING.bam -> ../ontTaul/ontTaul-to-triCasl-MAPPING.
—bam

+— agrPlal
| +— agrPlal-to-triCasl-MAPPING.bam
+— denPonl
| +— denPonl-to-triCasl-MAPPING.bam
+— lepDecl
| +— lepDecl-to-triCasl-MAPPING.bam
+— ontTaul

+— ontTaul-to-triCasl-MAPPING.bam
+— base
+— triCasl.fasta
+— triCasl.sthash
+— triCasl.stidx
+— genomes (collapsed)
+— reads

(continues on next page)

64 Chapter 3. Guide

https://samtools.github.io/hts-specs/SAMv1.pdf
http://www.htslib.org/

phyluce documentation, Release 1.7.0

(continued from previous page)

+— anoGlal-pelOO0-reads
+— agrPlal-pel00-reads
+— denPonl-pel00-reads
+— lepDecl-pelO0-reads
+— ontTaul-pel00-reads

These *-MAPPING.bam files are available from figshare.

What it all means

Basically, because we’ve now mapped simulated (or actual) sequence data from several exemplar taxa to a closely-
related “base” genome sequence, we’ve essentially identified putatively orthologous loci shared between the exemplar
taxa and the base taxon. These conserved regions are where the simulated (or actual) sequene data mapped with a
sequence divergence of < 5%.

Now, we need to filter this large number of conserved regions to remove things like repetitive regions, but also to find
which loci are shared among all exemplar taxa - not simply a single exemplar and the base taxon.

Conserved locus identification

You can download the alignment data generated in the steps above from figshare for use in subsequent steps, rather
than generating them youself (thus, saving you time).

Attention: If you are starting the tutorial at this position after downloading the *-MAPPING.bam files from
figshare, then you will need to create a directory to work in named uce-coleoptera and then place all of the *-

MAPPING.bam files in a subdirectory of uce-coleoptera names alignments/all. Your resulting directory structure
should look like:

uce—-coleoptera
+— alignments
+— all
+— agrPlal-to-triCasl-MAPPING.bam -> ../agrPlal/agrPlal-to-triCasl-MAPPING.

—bam
| +— anoGlal-to-triCasl-MAPPING.bam -> ../anoGlal/anoGlal-to-triCasl-MAPPING.
—bam
| +— denPonl-to-triCasl1-MAPPING.bam —-> ../denPonl/denPonl-to-triCasl-MAPPING.
—bam
| +— lepDecl-to-triCasl-MAPPING.bam -> ../lepDecl/lepDecl-to-triCasl-MAPPING.
—bam
| +— ontTaul-to-triCasl-MAPPING.bam -> ../ontTaul/ontTaul-to-triCasl-MAPPING.
—bam

+— genomes (collapsed)

If you want to go beyond conserved locus identification and design probes from the target taxa, you will also need
to download the appropriate genomes. See the Data download and preparation section.

Convert BAMS to BEDS

In the steps above, we have generated BAM files representing reads that stampy has mapped to the base genome.
Those reads that map align to putatively conserved sequence regions (that we need to filter), and these alignments of
mapping reads should reside in our alignments/all directory.

3.3. Phyluce Tutorials 65

https://ndownloader.figshare.com/files/5513489
https://ndownloader.figshare.com/files/5513489
https://ndownloader.figshare.com/files/5513489
https://ndownloader.figshare.com/files/5513489
http://www.well.ox.ac.uk/project-stampy

phyluce documentation, Release 1.7.0

To begin the filtering process, we’re going to convert each BAM file to BED format, which is an interval-based format
that is easy and fast to manipulate with a software suite known as bedtools. But before we do that, we are doing to
create a bed directory to hold all of these BED format files.

> cd uce-coleoptera

make a directory to hold the BED data
> mkdir bed
> cd bed

now, convert our *—-MAPPING.bam files to BED format
> for i in ../alignments/all/*.bam; do echo $i; bedtools bamtobed -i $i -bedl2 >

— basename 51 .bed; done

Your directory structure should look something like:

uce—-coleoptera

+— alignments

+— all
+— agrPlal-to-triCasl-MAPPING.bam
+— anoGlal-to-triCasl-MAPPING.bam
+— denPonl-to-triCasl-MAPPING.bam
+— lepDecl-to-triCasl-MAPPING.bam
+— ontTaul-to-triCasl-MAPPING.bam

+— agrPlal-to-triCasl-MAPPING.bam.bed
+— anoGlal-to-triCasl-MAPPING.bam.bed
+— denPonl-to-triCasl-MAPPING.bam.bed
+— lepDecl-to-triCasl-MAPPING.bam.bed
+— ontTaul-to-triCasl-MAPPING.bam.bed
+— genomes (collapsed)

Sort the converted BEDs

Before moving forward with the merge command, below, we need to sort the resulting BED files, which orders each
lines of data in the BED file by chromosome/scaffold/contig and position along that chromosome/scaffold/contig.
Again, we can do this with some bash scripting:

> cd uce-coleoptera
> cd bed
> for i1 in x.bed; do echo $i; bedtools sort -i $i > i%.*).sort.bed; done

Your directory structure should look something like the following (note that I have collapsed the directory listing for
all):

uce-coleoptera

+— alignments

| +— all (collapsed)

+— bed

+— agrPlal-to-triCasl-MAPPING.bam.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.bed
+— anoGlal-to-triCasl-MAPPING.bam.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.bed
+— denPonl-to-triCasl-MAPPING.bam.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.bed
+— lepDecl-to-triCasl-MAPPING.bam.bed

(continues on next page)

66 Chapter 3. Guide

https://samtools.github.io/hts-specs/SAMv1.pdf
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
http://bedtools.readthedocs.io/en/latest/
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://genome.ucsc.edu/FAQ/FAQformat.html#format1

phyluce documentation, Release 1.7.0

(continued from previous page)

+— lepDecl-to-triCasl-MAPPING.bam.sort.bed

+— ontTaul-to-triCasl-MAPPING.bam.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.bed
+— genomes (collapsed)

Merge overlapping or nearly-overlapping intervals

Because there may be small gaps between proximate regions of conservation (which may result because we’re using
data that are either from low-coverage, simulated reads or low-coverage actual reads) we need to merge together
putative regions of conservation that are proximate. Luckily bedtools has a handy tool to do that - the merge function.

> cd uce-coleoptera
> cd bed
> for i in *.bam.sort.bed; do echo $i; bedtools merge —-i $i > 1%.x).merge.bed; done

Your directory structure should look something like the following (note that I have collapsed the directory listing for
all):

uce—-coleoptera

+— alignments

| +— all (collapsed)

+— bed

+— agrPlal-to-triCasl-MAPPING.bam.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.bed
+— anoGlal-to-triCasl-MAPPING.bam.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.bed
+— denPonl-to-triCasl1l-MAPPING.bam.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.merge.bed
+— lepDecl-to-triCasl-MAPPING.bam.bed

+— lepDecl-to-triCasl-MAPPING.bam.sort.bed

+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.bed
+— ontTaul-to-triCasl-MAPPING.bam.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.bed
+— genomes (collapsed)

To get some idea of the total number of merged, putatively conserved regions in each exemplar taxon that are shared
with the base genome, we can simply loop over the files and count the number of lines in each:

> cd uce-coleoptera
> cd bed

> for i in *.bam.sort.merge.bed; do wc -1 $i; done

19810 agrPlal-to-triCasl-MAPPING.bam.sort.merge.bed
48350 anoGlal-to-triCasl-MAPPING.bam.sort.merge.bed
21390 denPonl-to-triCasl-MAPPING.bam.sort.merge.bed
33144 lepDecl-to-triCasl-MAPPING.bam.sort.merge.bed
25188 ontTaul-to-triCasl-MAPPING.bam.sort.merge.bed

3.3. Phyluce Tutorials 67

http://bedtools.readthedocs.io/en/latest/

phyluce documentation, Release 1.7.0

Remove repetitive intervals

At this point, we’ve mapped reads to the base genome, kept those regions where reads mapped, converted that to a
BED, and merged intervals that are very close to one another.

What we have not done is remove any putatively conserved intervals shared between exemplar taxa and the base
genome that are repetitive regions. To do this, we’re going to run a python program over all of the BED files for each
exemplar taxon. This program will look at the intervals shared between the exemplar taxon and the base genome and
it will remove intervals where the base genome is shorter than 80 bp and where > 25 % of the base genome is masked.

> cd uce-coleoptera
> cd bed

> for i in x.sort.merge.bed;
do
phyluce_probe_strip_masked_loci_from_set \

——bed S$i \
-—twobit ../genomes/triCasl/triCasl.2bit \
——output 1%.%}.strip.bed \
——filter-mask 0.25 \
—-min-length 80

done;

Screened 19810 sequences from agrPlal-to-triCasl-MAPPING.bam.sort.merge.bed. |
—Filtered 3113 with > 25.0% masked bases or > 0 N-bases or < 80 length. Kept 16697.
Screened 48350 sequences from anoGlal-to-triCasl-MAPPING.bam.sort.merge.bed. _,
—Filtered 13226 with > 25.0% masked bases or > 0 N-bases or < 80 length. Kept 35124.
Screened 21390 sequences from denPonl-to-triCasl-MAPPING.bam.sort.merge.bed. _,
—Filtered 3008 with > 25.0% masked bases or > 0 N-bases or < 80 length. Kept 18382.
Screened 33144 sequences from lepDecl-to-triCasl-MAPPING.bam.sort.merge.bed. |
—Filtered 6585 with > 25.0% masked bases or > 0 N-bases or < 80 length. Kept 26559.
Screened 25188 sequences from ontTaul-to-triCasl-MAPPING.bam.sort.merge.bed. _
—Filtered 6505 with > 25.0% masked bases or > 0 N-bases or < 80 length. Kept 18683.

When this finishes, your directory structure should look like:

uce—coleoptera
+— alignments
+— all (collapsed)
+— bed
+— agrPlal-to-triCasl-MAPPING.bam.bed
+— agrPlal-to-triCasl-MAPPING.bam.sort.bed
+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.bed
+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— anoGlal-to-triCasl-MAPPING.bam.bed
+— anoGlal-to-triCasl-MAPPING.bam.sort.bed
+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.bed
+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— denPonl-to-triCasl-MAPPING.bam.bed
+— denPonl-to-triCasl1-MAPPING.bam.sort.bed
+— denPonl-to-triCasl-MAPPING.bam.sort.merge.bed
+— denPonl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— lepDecl-to-triCasl-MAPPING.bam.bed
+— lepDecl-to-triCasl-MAPPING.bam.sort.bed
+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.bed
+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— ontTaul-to-triCasl1l-MAPPING.bam.bed

(continues on next page)

68 Chapter 3. Guide

https://genome.ucsc.edu/FAQ/FAQformat.html#format1

phyluce documentation, Release 1.7.0

(continued from previous page)

+— ontTaul-to-triCasl-MAPPING.bam.sort.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— genomes (collapsed)

Determining locus presence in multiple genomes

Up to this point, we’ve been processing each file on a taxon-by-taxon basis, where each taxon had data aligned to the
base genome. Now, we need to determine which loci are conserved across taxa. To do that, we first need to prepare a
configuration file (named bed-files.conf) that gives the paths to each of our * bam.sort.merge.strip.bed files. That file
needs to be in configuration file format, like so:

[beds]

agrPlal:agrPlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
anoGlal:anoGlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
denPonl:denPonl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
lepDecl:lepbDecl-to-triCas1-MAPPING.bam.sort.merge.strip.bed
ontTaul:ontTaul-to-triCasl-MAPPING.bam.sort.merge.strip.bed

The [beds] line is the “header” line, and that is followed by each taxon name (on the left) and the name of the BED
file we want to process (on the right). You should place this file in the bed directory. If you place it elsewhere, you’ll
need to use full paths on the right hand side.

Your directory structure should now look like (note new bed-files.conf)

uce-coleoptera

+— alignments
+— all (collapsed)
+— bed

+— agrPlal-to-triCasl-MAPPING.bam.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— anoGlal-to-triCasl1l-MAPPING.bam.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— bed-files.conf

+— denPonl-to-triCasl-MAPPING.bam.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.merge.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— lepDecl-to-triCasl-MAPPING.bam.bed

+— lepDecl-to-triCasl-MAPPING.bam.sort.bed

+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.bed

+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— menMoll-to-triCasl-MAPPING.bam.bed

+— menMoll-to-triCasl-MAPPING.bam.sort.bed

+— menMoll-to-triCasl-MAPPING.bam.sort.merge.bed

+— menMoll-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— ontTaul-to-triCasl-MAPPING.bam.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— genomes (collapsed)

3.3. Phyluce Tutorials 69

phyluce documentation, Release 1.7.0

Now, we’re going to run the following program, that creates a record of which alignment intervals are shared among
taxa. We need to pass the location of the bed-files.conf to this program, along with the name of our base genome, and
a name for the output database that will be created:

> phyluce_probe_get_multi_merge_table \
——conf bed-files.conf \
—--base—-taxon triCasl \
——output coleoptera-to-triCasl.sqglite

Creating database
Inserting results

The program shows the results of inserting data for each exemplar taxon that we’ve selected. If we take a look at the
table contents (see The probe.matches.sqlite database for more instructions on sqlite databases), we see something
like the following:

sglite> select * from triCasl limit 10;

uce chromo start stop agrplal anoglal denponl o
—lepdecl onttaul

1 GG695505.1 532 632 1 1 0 0,
N 1

2 GG695547.1 826 926 0 1 0 0,
— 0

3 GG695547.1 1121 1221 0 1 0 (O
— 0

4 GG695547.1 1293 1393 0 1 0 0,
— 0

5 GG694821.1 1002 1102 0 0 0 1,
— 0

6 GG695519.1 73 193 0 1 1 0,
— 0

7 GG695519.1 222 380 1 0 1 0,
[1

8 GG695519.1 925 1129 1 1 1 0,
— 1

9 DS497688.1 17907 18022 0 0 1 0.
10 DS497688.1 19840 19934 0 1 0 0,
— 0

The first row of this table (which is limited to 10 rows of results by the query although it is 60699 rows long) shows
that for triCaslI contig GG695505.1, agrplal, anoglal, and onttaul have reads that overlap at position 532 to 632.

Determining shared, conserved, loci

Now that we have our table of results, we can run a quick query (using a Python program) against the table to look at
results, more generally. The following code queries the database and writes out the number of loci shared by the base
taxon (triCasl) and 1, 2, 3, 4, and 5 (all) of the exemplar taxa that we’ve aligned to the base genome. You need to give
the program the path to the database created above and the name of the base taxon:

70 Chapter 3. Guide

http://www.sqlite.org
http://www.python.org

phyluce documentation, Release 1.7.0

> phyluce_probe_query_multi_merge_table \
--db coleoptera-to-triCasl.sqglite \
——base-taxon triCasl

Loci shared by triCasl + 0 taxa: 60,699.0
Loci shared by triCasl + 1 taxa: 60,699.0
Loci shared by triCasl + 2 taxa: 32,431.0
Loci shared by triCasl + 3 taxa: 15,834.0
Loci shared by triCasl + 4 taxa: 6,471.0
Loci shared by triCasl + 5 taxa: 1,822.0

The output from this program basically says that, if we are interested in only those loci found in all exemplar taxa that
align to the base genome, there are 1,822 of those. Similarly, if we’re willing to be a little less strict about things, there
are 6,471 conserved loci that are shared by triCas1 and 4 of the exemplar taxa.

Question: How conservative should I be?

Basically, the question boils down to “Should I select only the set of loci shared by all exemplars and the base genome
or shoul I be more liberal?”. It’s also a hard question to answer. In most cases, I’m pretty happy selecting n-1 or n-2
where 7 is the total number of exemplar taxa. In the example below, however, we’ve selected n as the “ideal”. This is
largely because we have so little information about coleopteran genomes - so we want to be pretty darn sure these loci
are found in most/all of them.

Now that we have a general sense of the number of conserved loci in each class of sharing across exemplars (e.g. 5
(all), 4, 3, 2, 1), we need to extract those loci that fall within one of these classes. In this case (and as noted in the box,
above), we’re going to ouput only those conserved loci that we’ve identified as being shared between the base genome
and all exemplars. We do that with a slightly different Python script. This script takes the database name, the base
genome, the count of exemplar taxa shared across, and the name of an output file as input. The output file will be BED
formatted.

> phyluce_probe_query_multi_merge_table \
——-db coleoptera-to-triCasl.sqglite \
—-base-taxon triCasl \
——output triCasl+5.bed \
——specific-counts 5

Counter ({'anoglal': 1822, 'lepdecl': 1822, 'agrplal': 1822, 'denponl': 1822, 'onttaul
—': 1822})

Conserved locus validation

Extract FASTA sequence from base genome for temp bait design

Now that we’ve indentified conserved sequences shared among the base genome and the exemplar taxa, we need to
start designing baits to capture these loci. The first step in this process is to extract FASTA sequences from the base
genome that correspond to the loci we’ve identified. We do that with a Python script that takes as input the BED file
we created, above, the 2bir-formatted base genomes, a length of sequence we want to extract (160 bp), and an output
FASTA filename.

Question: Why buffer to 160 bp?

We are extracting FASTA regions of 160 bp because that allows us to place 2 baits right in the center of this region
at 3x tiling density which means that standard 120 bp baits will overlap by 40 bp and have 80 bp to each side (total

3.3. Phyluce Tutorials 71

http://www.python.org
http://www.python.org
https://genome.ucsc.edu/FAQ/FAQformat.html#format1

phyluce documentation, Release 1.7.0

length 160 bp).

To run the code, we use:

> phyluce_probe_get_genome_sequences_from_bed \
-—bed triCasl+5.bed \
-—twobit ../genomes/triCasl/triCasl.2bit \
——buffer-to 160 \
——output triCasl+5.fasta

Screened 1822 sequences. Filtered 7 < 160 bp or with > 25.0% masked bases or > 0 N-
—bases. Kept 1815.

That should produce a fasta file whose contents look similar to:

>slice_0 |DS497688.1:249724-250111
AAAATCAAAGTCGAATACAAAGGCGAATCTAAGACTTTCTATCCTGAAGAGATCAGTTCC
ATGGTacttacaaaaatgaaggaaacTGCCGAAGCCTATTTAGGCAAATCGGTCACAAAT
GCCGTTATCACCGTACCAGCCTATTTCAACGATTCGCAAAGGCAGGCAACTAAAGATGCC
GGTACTATTTCCGGCTTGCAAGTTTTGCGTATTATTAACGAACCTACGGCTGCTGCCATT
GCCTACGGTTTGGATAAGAAGGGAACTGGGGAACGTAATGTCTTGATTTTTGATCTGGGT
GGTGGTACTTTTGATGTGAGCATTTTGACCATTGAGGATGGCATTTTCGAGGTCAAGTCC
ACCGCTGGTGATACGCATTTGGGTGGC

>slice_1 |DS497688.1:250513-250673
CCTGATGAGGCTGTTGCCTATGGAGCTGCCGTCCAAGCCGCCATTTTGCACGGTGATAAG
TCGGAAGAGGTTCAAGATTTGCTACTTTTGGACGTTACTCCACTTTCATTGGGTATTGAA
ACAGCAGGCGGTGTGATGACTGCTTTGATCAAGCGTAACA

>slice_2 |DS497688.1:250682-250991
CAACCAAACAAACGCAAACTTTCACCACCTACTCTGATAACCAACCCGGTGTATTGATCC
AAGTGTACGAAGGCGAACGAGCGATGACTAAAGACAATAACCTTTTGGGTAAATTCGAAT
TGACTGGAATCCCACCGGCACCAAGAGGTGTTCCCCAAATCGAAGTCACCTTTGATATTG
ACGCCAACGGGATTTTGAACGTCACAGCCATCGAGAAGAGCACCAACAAGGAGAACAAAA
TCACCATCACCAATGATAAGGGACGTTTGAGCAAGGAAGATATCGAACGGATGGTCAACG
AAGCCGAGA

Design a temporary bait set from the base taxon

Now that we’ve extracted the appropriate loci from the base genome, we need to design bait sequences targeting these
loci. For that, we use a different Python script. This program takes as input the FASTA file we just created, and some
design-specific information (—probe-prefix, —design, —designer). The design options (—tiling-density, —two-probes,
—overlap) ensure that we select two baits per locus with 3x tiling that overlap the middle of the targeted locus. Finally,
we remove (—masking, —remove-gc) potentially problematic baits with >25% repeat content and GC content outside
of the range of 30-70% (30 % > GC > 70%).

> phyluce_probe_get_tiled_probes \
——input triCasl+5.fasta \
——probe-prefix "uce-" \
-—-design coleoptera-vl \
——designer faircloth \
-—tiling-density 3 \
-—two-probes \
——overlap middle \
--masking 0.25 \
—-—remove-gc \
——output triCasl+5.temp.probes

(continues on next page)

72 Chapter 3. Guide

http://www.python.org

phyluce documentation, Release 1.7.0

(continued from previous page)

Probes removed for masking (.) / low GC % (G) / ambiguous bases (N):
GGGGGGGGGGGGGGGGEGGGGGGGGEGGGEE

Conserved locus count = 1805
Probe Count = 3602

Remove duplicates from our temporary bait set

Because we haven’t search for duplicates among our loci and because reducing longer reads to shorter ones (e.g.
designing baits from loci) can introduce duplicate baits, we need to screen the resulting bait set for duplicates. To
do that, we follow a 2-stage process - first to align all probes to themselves then to use those alignments to remove
potentially duplicates baits/loci. First we run a lastz search of all baits to themselves. This program takes as input the
temp probes we just designed (as both —target and —query), relatively low values for —identity and —coverage to make
sure we identify as many duplicates as possible, and the program writes these results to the —output file:

> phyluce_probe_easy_lastz \
-—target triCasl+5.temp.probes \
-—query triCasl+5.temp.probes \
-—identity 50 —--coverage 50 \
——output triCasl+5.temp.probes-TO-SELF-PROBES.lastz

Started: Fri Jun 03, 2016 13:57:54
Ended: Fri Jun 03, 2016 13:57:55
Time for execution: 0.0284410158793 minutes

Now that we’ve run the alignments, we need to screen them alignments and remove the duplicate baits from the bait
set. This program takes as input the lastz results from above and the temp-probe file, as well as the probe-prefix
that we used during probe design, above. The results are written to a file that is equivalent to the probe file name +
DUPE-SCREENED, so in this case the output file is named triCasl+5.temp-DUPE-SCREENED.probes.

> phyluce_probe_remove_duplicate_hits_from_probes_using_lastz \
-—fasta triCasl+5.temp.probes \
-—lastz triCasl+5.temp.probes-TO-SELF-PROBES.lastz \
—-probe-prefix=uce-

Parsing lastz file...
Screening results...
Screened 3601 fasta sequences. Filtered 292 duplicates. Kept 3019.

Align baits against exemplar genomes

Now that we have a duplicate-free (or putatively duplicate free) set of temporary baits designed from conserved loci in
the base genome, we’re going to use some in-silico alignments to see if we can locate these loci in the several exemplar
genomes.

Attention: For the following analyses, you need genome assemblies for each of the exemplar taxa, formatted as
2bit files.

3.3. Phyluce Tutorials 73

http://www.bx.psu.edu/~rsharris/lastz/
http://www.bx.psu.edu/~rsharris/lastz/

phyluce documentation, Release 1.7.0

We’ll use the results of these alignments to design a bait set that includes baits designed from the base genome, but also
from the exemplar taxa. This should allow our bait set to work more consistently across broad groups of organisms.

In terms of directory structure, things should look pretty similar to the following:

uce-coleoptera
+— alignments

+— all (collapsed)
+— bed
+— agrPlal-to-triCasl-MAPPING.bam.bed
+— agrPlal-to-triCasl-MAPPING.bam.sort.bed
+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.bed
+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— anoGlal-to-triCasl-MAPPING.bam.bed
+— anoGlal-to-triCasl-MAPPING.bam.sort.bed
+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.bed
+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— bed-files.conf
+— coleoptera-to-triCasl.sqglite
+— denPonl-to-triCasl-MAPPING.bam.bed
+— denPonl-to-triCasl-MAPPING.bam.sort.bed
+— denPonl-to-triCasl-MAPPING.bam.sort.merge.bed
+— denPonl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— lepDecl-to-triCasl-MAPPING.bam.bed
+— lepDecl-to-triCasl-MAPPING.bam.sort.bed
+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.bed
+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— ontTaul-to-triCasl-MAPPING.bam.bed
+— ontTaul-to-triCasl-MAPPING.bam.sort.bed
+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.bed
+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— triCasl+5.bed
+— triCasl+5.bed.missing.matrix
+— triCasl+5.fasta
+— genomes

+— agrPlal
+— agrPlal.2bit
+— agrPlal.fasta

+— anoGlal
+— anoGlal.2bit
+— anoGlal. fasta
+— denPonl

+— denPonl.2bit
+— denPonl. fasta
+— lepDecl

+— lepDecl.2bit
+— lepDecl.fasta
+— menMoll

+— menMoll.2bit
+— menMoll. fasta

+— ontTaul
+— ontTaul.2bit
+— ontTaul. fasta

+— triCasl
+— triCasl.2bit
+— triCasl.fasta

Note that we have all the genomes in their directory, in both FASTA and 2bit formats. We’re also have a new genome
sequence in here - that of menMoll (Mengenilla moldrzyki [twisted-wing parasites]), which represents the outgroup

74 Chapter 3. Guide

phyluce documentation, Release 1.7.0

to Coleoptera. We're adding this taxon because it helps us bridge the base of the tree - e.g. the divergence between the
outgroup and the exemplar taxa that we’re using to design probes.

Question: What exemplar taxa should I use for bait design?

This is a really hard question to answer. In old, divergent groups with few genomic resources, the answer is usually
“all the species” with genomic data. Basically, you want to include exemplars that make the divergence among baits
targeting the same loci something >20% or so. That said, even this number is a bit of a guess - no one has systematically
tested how “sticky” baits are when they are used to enrich loci across divergent groups. We know they are pretty sticky
and in certain cases can enrich loci as much as 35%-40% divergent from the bait sequence. Generally speaking, I try
to include exemplar taxa during probe design that bridge the known diversity of a given group... again, in many cases
this is hard (or impossible) to know given current data. So, you may have to take a bit of a guess.

So, assuming that you have the appropriate 2bit files in uce-coleoptera/genomes, we are going to align the temporary
probes that we’ve designed to the exemplar genomes, and we’re going to run these and subsequent bait design steps in
a new directory, named probe-design. So:

> cd uce-coleoptera
> mkdir probe-design
> cd probe-design

Now, you’re directory structure should look like:

uce-coleoptera

+— alignments

| +— all (collapsed)

+— bed

+— agrPlal-to-triCasl-MAPPING.bam.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.bed

+— agrPlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— anoGlal-to-triCasl-MAPPING.bam.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.bed

+— anoGlal-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— Dbed-files.conf

+— coleoptera-to-triCasl.sqglite

+— denPonl-to-triCasl-MAPPING.bam.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.merge.bed

+— denPonl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— lepDecl-to-triCasl-MAPPING.bam.bed

+— lepDecl-to-triCasl-MAPPING.bam.sort.bed

+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.bed

+— lepDecl-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— menMoll-to-triCasl-MAPPING.bam.bed

+— menMoll-to-triCasl-MAPPING.bam.sort.bed

+— menMoll-to-triCasl-MAPPING.bam.sort.merge.bed

+— menMoll-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— ontTaul-to-triCasl-MAPPING.bam.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.bed

+— ontTaul-to-triCasl-MAPPING.bam.sort.merge.strip.bed
+— triCasl+5.bed

+— triCasl+5.bed.missing.matrix

+— triCasl+5.fasta

(continues on next page)

3.3. Phyluce Tutorials 75

phyluce documentation, Release 1.7.0

(continued from previous page)

+— genomes (collapsed)
+— probe-design

We need to align the temporary probe sequences to each genome, which we can do using the following code, which
takes as input our temporary probe file, the list of genomes we want to align the probes against, the path to the
genomes, the minimum sequence identity to accept a match (on the low end of the spectrum for this step), and number
of compute cores to use, and the name of an output database to create and the output directory in which to store the
lastz results.

Warning: Note that I am using 16 physical CPU cores (—cores) to do this work. You need to use the number of
physical cores available on your machine.

> mkdir coleoptera-genome-lastz
> phyluce_probe_run_multiple_lastzs_sglite \
——probefile ../bed/triCasl+5.temp-DUPE-SCREENED.probes \
-—-scaffoldlist agrPlal anoGlal denPonl lepDecl ontTaul triCasl menMoll \
-—genome-base-path ../genomes \
-—identity 50 \
—-—cores 16 \
-—db triCasl+5+menMoll.sglite \
——output coleoptera—-genome-lastz

Running against agrPlal.2bit
Running with the --huge option. Chunking files into 10000000 bp

< ... snip ... >

Cleaning up the chunked files...

Cleaning /nfs/datal/working/bfaircloth-insects/coleoptera/temp/probe-design/
—coleoptera-genome-lastz/triCasl+5.temp-DUPE-SCREENED.probes_v_menMoll.lastz
Creating menMoll table

Inserting data to menMoll table

Extract sequence around conserved loci from exemplar genomes

Based on the alignments of the temporary probe set to the exemplar genomes, we need to extract FASTA data from
each of the exemplar sequences so that we can design baits targeting the conserved loci in each. This is pretty similar
to what we did earlier for the temporary probe set, except that now we’re running the extraction across all the exemplar
taxa.

Before we begin, we need to make a configuration file with all the genome locations in it (again, as before):

[scaffolds]
menMoll:/path/to/uce-coleoptera/genomes/menMoll/menMoll.2bit
agrPlal:/path/to/uce-coleoptera/genomes/agrPlal/agrPlal.2bit
anoGlal:/path/to/uce-coleoptera/genomes/anoGlal/anoGlal.2bit
denPonl:/path/to/uce-coleoptera/genomes/denPonl/denPonl.2bit
lepDecl:/path/to/uce-coleoptera/genomes/lepDecl/lepDecl.2bit
ontTaul:/path/to/uce-coleoptera/genomes/ontTaul/ontTaul.2bit
triCasl:/path/to/uce-coleoptera/genomes/triCasl/triCasl.2bit

Using the configuration file, we need to extract the FASTA sequence that we need from each exemplar taxon. Here,
we’re buffering each locus to 180 bp to give us a little more room to work with during the probe design step. The

76 Chapter 3. Guide

phyluce documentation, Release 1.7.0

program takes our config file as input, along with the folder of lastz results created above. The —name-pattern argument
allows us to match files int the —lastz directory, —probes is how we buffer the sequence, and we pass the name of an
output directory to —output:

> phyluce_probe_slice_sequence_from_genomes \
-—conf coleoptera—-genome.conf \
—-lastz coleoptera—genome—-lastz \
——probes 180 \
—-—name-pattern "triCasl+5.temp-DUPE-SCREENED.probes_v_{}.lastz.clean" \
——output coleoptera—-genome-fasta

2016-06-03 15:07:16,642 - Phyluce - INFO - =================== Starting Phyluce:
—~Slice Sequence ===================

2016-06-03 15:07:16,644 - Phyluce - INFO - ——————————————————— Working on menMoll |
—genome ———————————————————

2016-06-03 15:07:16,645 - Phyluce - INFO - Reading menMoll genome

2016-06-03 15:07:20,221 - Phyluce - INFO - menMoll: 884 uces, 139 dupes, 745 non-—
—dupes, 0 orient drop, 2 length drop, 738 written

2016-06-03 15:07:20,222 - Phyluce - INFO - ——————————————————— Working on agrPlal
—genome ———————————————————

2016-06-03 15:07:20,223 - Phyluce - INFO - Reading agrPlal genome

2016-06-03 15:07:24,759 - Phyluce - INFO - agrPlal: 1410 uces, 184 dupes, 1226 non-
—dupes, 7 orient drop, 63 length drop, 1156 written

2016-06-03 15:07:24,760 - Phyluce - INFO - ——————————————————— Working on anoGlal,
—genome ———————————————————

2016-06-03 15:07:24,761 - Phyluce - INFO - Reading anoGlal genome

2016-06-03 15:07:29,926 - Phyluce - INFO - anoGlal: 1474 uces, 224 dupes, 1250 non-
—dupes, 6 orient drop, 35 length drop, 1209 written

2016-06-03 15:07:29,926 - Phyluce - INFO - ——————————————————— Working on denPonl
—genome ———————————————————

2016-06-03 15:07:29,929 - Phyluce - INFO - Reading denPonl genome

2016-06-03 15:07:34,472 - Phyluce - INFO - denPonl: 1361 uces, 305 dupes, 1056 non-—
—dupes, 6 orient drop, 30 length drop, 1020 written

2016-06-03 15:07:34,472 - Phyluce - INFO - ——————————————————— Working on lepDecl,
—genome ———————————————————

2016-06-03 15:07:34,473 - Phyluce - INFO - Reading lepDecl genome

2016-06-03 15:07:40,020 - Phyluce - INFO - lepDecl: 1436 uces, 259 dupes, 1177 non-
—dupes, 10 orient drop, 28 length drop, 1139 written

2016-06-03 15:07:40,021 - Phyluce - INFO - ——————————————————— Working on ontTaul,
—genome ———————————————————

2016-06-03 15:07:40,022 - Phyluce - INFO - Reading ontTaul genome

2016-06-03 15:07:44,350 - Phyluce - INFO - ontTaul: 1361 uces, 206 dupes, 1155 non-
—dupes, 9 orient drop, 41 length drop, 1105 written

2016-06-03 15:07:44,350 - Phyluce - INFO - ——————————————————— Working on triCasl,,
—genome ———————————————————

2016-06-03 15:07:44,351 - Phyluce - INFO - Reading triCasl genome

2016-06-03 15:07:49,499 - Phyluce - INFO - triCasl: 1513 uces, 199 dupes, 1314 non-
—dupes, 26 orient drop, 46 length drop, 1242 written

If we look at out directory structure, it looks something like:

uce—-coleoptera

+— alignments (collapsed)

+— bed (collapsed)

+— genomes (collapsed)

+— probe-design
+— coleoptera—genome.conf
+— coleoptera—-genome-fasta

(continues on next page)

3.3. Phyluce Tutorials 77

http://www.bx.psu.edu/~rsharris/lastz/

phyluce documentation, Release 1.7.0

(continued from previous page)

+— agrplal.fasta

+— anoglal. fasta

+— denponl. fasta

+— lepdecl.fasta

+— menmoll. fasta

+— onttaul. fasta

+— tricasl.fasta

+— coleoptera—-genome—-lastz

+— triCasl+5.temp-DUPE-SCREENED.probes_v_agrPlal.lastz.
+— triCasl+5.temp-DUPE-SCREENED.probes_v_anoGlal.lastz.
+— triCasl+5.temp-DUPE-SCREENED.probes_v_denPonl.lastz.
+— triCasl+5.temp-DUPE-SCREENED.probes_v_lepDecl.lastz.
+— triCasl+5.temp-DUPE-SCREENED.probes_v_menMoll.lastz.
+— triCasl+5.temp-DUPE-SCREENED.probes_v_ontTaul.lastz.
+— triCasl+5.temp-DUPE-SCREENED.probes_v_triCasl.lastz.
+— triCasl+5+menMoll.sglite

clean
clean
clean
clean
clean
clean
clean

The FASTA files we just created are in uce-coleoptera/coleoptera-genome-fasta. The output from the program that
you see basically shows you how many UCE loci we extracted from each of the exemplar genomes

lowest number we located and extracted are from the menMoll (outgroup) genome.

If we have a look in one of these FASTA files, it looks like:

. As expected, the

> less probe-design/coleoptera-genome-fasta/agrplal.fasta

>slice_0Olcontig:KL218988.1|s1lice:301686-301866|uce:uce-500|match
301831 |orient:+|probes:1
TCGAACTTCTGGTGCTTGTCACCCTTGATGTCCGCACCGAATTCCTTCACGAGACTGTTT
CTAAAACTTTGGACAAGATGATTGGAGACACAGAAACAGACGAACATCAGAAACGTGTAT
ATCTTCACTTTCTAGAGCATTCATACAAACTTATTACCAGATGTACTCAGCAGCAGCTTT
>slice_1l|lcontig:KL218988.1]s1ice:319624-319804 |uce:uce-501|match
319791 |orient:+|probes:2
atgattttttcaaAGGTTACAGCGAAGTCCTCGATTICTACAGCAGATCGAAGAACTAGGA
GAAGAGACTGGCCTGGTGTGCTGTATTTGTCGCGAGGGATACAAGTATCAACCTGCCAAG
GTATTGGGAATTTATACGTTTACAAAGAGGTGCAACGTGGACGAGTTCGAAGCAAAACCA
>slice_2|contig:KL219144.1|s1lice:184423-184603|uce:uce-503|match
184573 |orient:+|probes:1
agttttaaataatcttACCTAAAGAACTAAAATGAAGAAGCATTTCGTCTGCTCGTAAGT
CTTGAGCAATGACATCATCAGCGTAGACACATATTATAGCAAGGCATATAAATAGGTGAA
AGTAGTCTGTTAGATAATTTGCCCAACAAGCTTCCCACAGTCTAAGGGCAACACCTTCGG
>slice_3|contig:KL219144.1|slice:237138-237318|uce:uce-504 |match
237306 |orient:+|probes:2
CTGTGCAAGAGTGAGTGCCATTGATGCAACACTTGAGCGAGATGATCTAAACCTCCATGG
TGAAAATGAAGAATTTTATATTGAGATTCCCTCGAAGCAACAACCACCTGCCCTGATGTG
CAGCTTGAGTCGTTAAAGAAAAGCCTTAAAGATCTCATTTGGCTTAGATCAACGCTGAAC

:301721-

:319637-

:184453-

:237150-

Find which loci we detect consistently

As before, we want to determine which loci we are detecting consistently across all of the exemplar taxa when do-
ing these in-silico searches. To do that, we’ll run another bit of python code. Here, we’re working in the uce-
coleoptera/coleoptera-genome-lastz directory. This program will create a relational database that houses detections of
loci in the exemplar taxa. It takes, as input, the folder of FASTAs we just created, the base genome taxon, and a name

to use as the output database:

78

Chapter 3. Guide

phyluce documentation, Release 1.7.0

> phyluce_probe_get_multi_fasta_table \
-—fastas ../coleoptera-genome-fasta \
——output multifastas.sqglite \
—-—base-taxon triCasl

menmoll.
agrplal..
anoglal..
denponl. .
lepdecl..
onttaul..
tricasl..
Creating database
Inserting results

If we take a look at the table contents in the database (see The probe.matches.sqlite database for more instructions on
sqlite databases), we see something like the following:

locus menmoll agrplal anoglal denponl lepdecl onttaul o
—tricasl

uce-500 0 1 1 0 1 1 1
uce-501 1 1 1 1 1 1 1
uce-503 1 1 1 1 0 1 1
uce-504 1 1 1 1 1 1 1
uce-505 1 0 1 0 0 1 1
uce-506 1 1 1 1 1 1 1
uce-507 0 1 1 1 1 1 1
uce-508 1 1 1 1 1 0 1
uce-509 1 0 1 1 1 1 1
uce-967 0 0 0 1 1 1 0

Which shows our detection of conserved loci in each of the exemplar taxa when we search for them using the temporary
probes that we designed from the base genome. As before, we can get some idea of the distribution of hits among
exemplar taxa (e.g., are loci detected in “all”, n-1 taxa, n-2 taxa, etc.).

> phyluce_probe_query_multi_fasta_table \
-—db multifastas.sqglite \
—-—base-taxon triCasl

taxa: 1,437.
taxa: 1,437.
taxa: 1,355.
taxa: 1,303.
taxa: 1,2009.
taxa: 1,099.
taxa: 820.0
taxa: 386.0

Loci shared by
Loci shared by
Loci shared by
Loci shared by
Loci shared by
Loci shared by
Loci shared by
Loci shared by

o U W N O
O O O O o o

Again, we’ve got to make a decision here about how conservative we want to be regarding baits that hit all/some taxa.
We only get 386 loci that we detect in all exemplars (including the base genome and the menMoll outgroup). That
seems too strict (particularly because this total includes menMoll, which is really divergent from our taxa of interest).
We also have to keep in mind that we can randomly fail to detect loci that are actually present, either by chance or do
to sequence divergences that are >50% (the value we used in our search). In the end, I settled on loci we detected in >
4 exemplar taxa. So we need to extract those from the database and store them in triCasl+5-back-to-4.conf":

3.3. Phyluce Tutorials 79

http://www.sqlite.org

phyluce documentation, Release 1.7.0

phyluce_probe_query_multi_fasta_table \
-—db multifastas.sqglite \
-—-base-taxon triCasl \
-—output triCasl+5-back-to-4.conf \
—-—specific-counts 4

Counter ({'tricasl': 1160, 'anoglal': 1140, 'agrplal': 1091, 'lepdecl': 1080, 'onttaul
—': 1043, 'denponl': 969, 'menmoll': 658})
Total loci = 1209

The values above show the number of loci detected in each exemplar taxon and the total number of loci we’ll be
targeting with the bait set we’re about to design.

Your directory should look something like the following:

uce-coleoptera
+— alignments (collapsed)
+— bed (collapsed)

+— genomes (collapsed)

+— probe-design
+— coleoptera—genome.conf
+— coleoptera—-genome-fasta

+— agrplal.fasta
+— anoglal.fasta
+— denponl. fasta
+— lepdecl.fasta

+— menmoll. fasta
+— onttaul. fasta
+— tricasl.fasta
+— coleoptera—genome-lastz

+— triCasl+5.temp-DUPE-SCREENED.probes_v_agrPlal.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_anoGlal.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_denPonl.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_lepDecl.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_menMoll.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_ontTaul.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_triCasl.lastz.clean
+— multifastas.sglite

+— triCasl+5-back-to-4.conf

+— triCasl+5-back-to-4.conf.missing.matrix

+— triCasl+5+menMoll.sqglite

Final bait set design

Design a bait set using all exemplar genomes (and the base)

Now that we’ve settled on the set of loci we’ll try to enrich, we want to design baits to target them. In contrast to the
steps we took before to design the temporary bait set, we’re using all of the exemplar genomes and the base genome to
design probes. This way, we’ll have a heterogeneous bait mix that contains probes designed from each exemplar but
targeting the same locus, which should make the probe set we’re designing more “universal”.

To do this, we use a program similar to what we used before, except that this program has been modified to design
probes across many exemplar genomes (instead of just one). As input, we give the program the name of the directory
holding all of our fastas and the name of the config file we created in the step above. Then, as before, we need to add
some metadata that will be incorporated to the bait set design file, and we tell the program to tile at 3x density, use a

80 Chapter 3. Guide

phyluce documentation, Release 1.7.0

“middle” overlap, remove baits with >25% masking, and to design two probes targeting each locus. Finally, we write
this probe set to a file named coleoptera-v1-master-probe-list.fasta.

phyluce_probe_get_tiled_probe_from multiple_inputs \
-—-fastas coleoptera-genome-fasta \
--multi-fasta-output triCasl+5-back-to-4.conf \
——probe-prefix "uce-" \
-—designer faircloth \
--design coleoptera-vl \
——tiling-density 3 \
-—overlap middle \
--masking 0.25 \
-—remove-gc \
——two-probes \
——output coleoptera-vl-master-probe-list.fasta

GGGGGGGGGGGGGGEGEGEGEEEEEEEEEEGEGEGEEGGEGGEGGEGGENNGGGGGEGEGGGGGGGGGEENGGGGGGGGGGGGNNGGGGGGGGGGEGGGET

Conserved locus count = 1209
Probe Count = 14113

bFGGGGGGGGGGGG!

Note that the number of baits that we’ve designed to target 1209 conserved loci is quite high - this is because we’re
including roughly 2 baits for 1209 loci across 7 exemplar taxa (16926 is the theoretical maximum).

Remove duplicates from our bait set

As before, we need to check out bait set for duplicate loci. This time, the search is going to take longer, because of the
larger number of baits. We’ll align all the probes to themselves, then read in the alignments, and filter the probe list to
remove putative duplicates.

Align probes to themselves at low stringency to identify duplicates:

phyluce_probe_easy_lastz \
-—target coleoptera-vl-master-probe-list.fasta \
-—query coleoptera-vl-master-probe-list.fasta \
——identity 50 \
-—coverage 50 \
——output coleoptera-vl-master-probe-1ist-TO-SELF-PROBES.lastz

Started: Fri Jun 03, 2016 15:50:52
Ended: Fri Jun 03, 2016 15:51:11
Time for execution: 0.322272149722 minutes

Now, screen the alignements and filter our master probe list to remove duplicates:

phyluce_probe_remove_duplicate_hits_from _probes_using_lastz \
-—-fasta coleoptera-vl-master-probe-list.fasta \
-—lastz coleoptera-vl-master-probe-1ist-TO-SELF-PROBES.lastz \
——probe-prefix=uce-

Parsing lastz file...
Screening results...
Screened 14112 fasta sequences. Filtered 37 duplicates. Kept 13674.

The master probe list that has been filtered of putatively duplicate loci is now located in coleoptera-vi-master-probe-
list-DUPE-SCREENED..fasta.

Your directory should look something like the following:

3.3. Phyluce Tutorials 81

phyluce documentation, Release 1.7.0

uce—coleoptera
+— alignments (collapsed)
+— bed (collapsed)

+— genomes (collapsed)

+— probe-design
+— coleoptera—-genome.conf
+— coleoptera—genome—-fasta

+— agrplal.fasta
+— anoglal.fasta
+— denponl. fasta
+— lepdecl. fasta
+— menmoll. fasta

+— onttaul. fasta
+— tricasl.fasta
+— coleoptera—-genome-lastz

+— triCasl+5.temp-DUPE-SCREENED.probes_v_agrPlal.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_anoGlal.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_denPonl.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_lepDecl.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_menMoll.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_ontTaul.lastz.clean
+— triCasl+5.temp-DUPE-SCREENED.probes_v_triCasl.lastz.clean
+— coleoptera-vli-master-probe-1ist-DUPE-SCREENED. fasta

+— coleoptera-vli-master-probe-list.fasta

+— coleoptera-vl-master-probe-1ist-TO-SELF-PROBES.lastz

+— multifastas.sglite

+— triCasl+5-back-to-4.conf

+— triCasl+5-back-to-4.conf.missing.matrix

+— triCasl+5+menMoll.sqglite

The master bait list

What we’ve created, above, is the master bait list that contains baits targeting the conserved locus we identified.
Because we’ve designed probes from multiple exemplar taxa, the number of overall baits is high (as high as 14 baits
targeting each conserved locus). This bait set is ready for synthesis and subsequent enrichment of these conserved loci
shared among coleoptera.

Subsetting the master probe list

Sometimes we might not want to synthesize all of the baits for all of the loci. For instance, we might be enriching
loci from species that are nested within the clade defined by ((‘Anoplophora glabripennis (Asian longhorned bee-
tle)’:’Leptinotarsa decemlineata (Colorado potato beetle)’)’Dendroctonus ponderosae (mountain pine beetle)’), and
because we’re only working with these species, we might want to drop the baits targeting UCE loci in Agrilus pla-
nipennis (emerald ash borer), Tribolium castaneum (red flour beetle), Onthophagus taurus (taurus scarab), and Men-
genilla moldrzyki (Strepsiptera). This is actually pretty easy to do - we just need to subset the baits to include those
taxa that we do want. Given the example, above, we can run:

> phyluce_probe_get_subsets_of_tiled_probes \
-—probes coleoptera-vl-master-probe-1ist-DUPE-SCREENED.fasta \
-—taxa anoglal lepdecl denponl \
——output coleoptera-vli-master-probe-1ist-DUPE-SCREENED-SUBSET-CLADE_1.fasta

All probes = 13674
—-—— Probes by taxon ——-

(continues on next page)

82 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

anoglal 2189

menmoll 1236

lepdecl 2083

denponl 1867

onttaul 1970

agrplal 2086

tricasl 2243

—-—— Post filtering ———
Conserved locus count = 1169
Probe Count = 6139

In-silico test of the bait design

Now that we’ve designed our baits, it’s always good to run a sanity check on the data - if we use the baits to collect
data from a selection of available genomes (or other genetic data), can we reconstruct a phylogeny that is sane, given
what we know about the specific taxa?

How we do that is outlined below. Many of the steps we’ve run before, so I'm not going to explain these quite as
much as I have previously. Several other of the steps that we’re going to run are also outlined in Tutorial I: UCE
Phylogenomics.

First, we need to make a directory to hold our in-silico test results:

> cd uce-coleoptera
> mkdir probe-design-test
> cd probe-design-test

Now, our directory tree should look something like:

uce-coleoptera

+— alignments (collapsed)
+— bed (collapsed)
+— genomes (collapsed)

+— probe-design (collapsed)
+— probe-design-test

Align our bait set to the extant genome sequences

Here (and if you have them), you may want to include all the genomic data you have access to - particularly if you
removed some taxa because they were closely related to other taxa and designing probes from these closely related
groups was redundant. To run these alignments (you’ve seen this before):

phyluce_probe_run_multiple_lastzs_sqglite \
-—db triCasl+5+strepsiptera-test.sqglite \
-—output coleoptera-genome-lastz \
——probefile ../probe-design/coleoptera-vl-master-probe-1ist-DUPE-SCREENED.fasta \
--scaffoldlist agrPlal anoGlal denPonl lepDecl ontTaul triCasl menMoll \
-—genome-base-path ../genomes \
——identity 50 \
——cores 16

3.3. Phyluce Tutorials 83

phyluce documentation, Release 1.7.0

Warning: Note that I am using 16 physical CPU cores (—cores) to do this work. You need to use the number of
physical cores available on your machine.

Now, we need to extract fasta data for each of these loci. This is effectively the same as what we’ve done before, but
notice the use of —flank in place of —probe. This tells the program that we want to extract larger chunks of sequence,
in thie base 400 bp to the each side of a given locus (if possible):

> phyluce_probe_slice_sequence_from_genomes \
-—conf coleoptera—-genome.conf \
-—lastz coleoptera-genome-lastz \
—-—-output coleoptera-genome-fasta \
-—flank 400 \

——name-pattern "coleoptera-vl-master—-probe-1ist-DUPE-SCREENED.fasta_v_{}.lastz.
—clean"
2016-06-03 16:36:47,712 — Phyluce — INFO - =================== Starting Phyluce:
—Slice Sequence ======= =========== =
2016-06-03 16:36:47,714 - Phyluce - INFO - ——————————————————— Working on menMoll
—genome - -
2016-06-03 16:36:47,715 - Phyluce - INFO - Reading menMoll genome
2016-06-03 16:36:57,447 - Phyluce - INFO - menMoll: 766 uces, 73 dupes, 693 non-dupes,
— 0 orient drop, 2 length drop, 691 written
2016-06-03 16:36:57,447 - Phyluce - INFO - ——————————————————— Working on agrPlal,
—genome ————-——————————————
2016-06-03 16:36:57,448 — Phyluce - INFO - Reading agrPlal genome
2016-06-03 16:37:12,538 - Phyluce - INFO - agrPlal: 1151 uces, 81 dupes, 1070 non-
—dupes, 0 orient drop, 34 length drop, 1036 written
2016-06-03 16:37:12,538 - Phyluce - INFO - ——————————————————— Working on anoGlal,
—genome ———————————————————
2016-06-03 16:37:12,539 - Phyluce - INFO - Reading anoGlal genome
2016-06-03 16:37:29,320 - Phyluce - INFO - anoGlal: 1167 uces, 103 dupes, 1064 non-—
—dupes, 0 orient drop, 17 length drop, 1047 written
2016-06-03 16:37:29,321 - Phyluce - INFO - ——————————————————— Working on denPonl
—genome ———--— - oo oo
2016-06-03 16:37:29,322 - Phyluce - INFO - Reading denPonl genome
2016-06-03 16:37:44,958 - Phyluce - INFO - denPonl: 1126 uces, 174 dupes, 952 non-—
—~dupes, 1 orient drop, 16 length drop, 935 written
2016-06-03 16:37:44,959 - Phyluce - INFO - ——————————————————— Working on lepDecl,
—genome -
2016-06-03 16:37:44,959 — Phyluce - INFO - Reading lepDecl genome
2016-06-03 16:38:01,794 - Phyluce - INFO - lepDecl: 1156 uces, 142 dupes, 1014 non-—
—dupes, 6 orient drop, 22 length drop, 986 written
2016-06-03 16:38:01,794 - Phyluce - INFO - ——————————————————— Working on ontTaul,,
—genome ———————————————————
2016-06-03 16:38:01,796 - Phyluce - INFO - Reading ontTaul genome
2016-06-03 16:38:16,611 — Phyluce - INFO - ontTaul: 1134 uces, 100 dupes, 1034 non-
—dupes, 3 orient drop, 14 length drop, 1017 written
2016-06-03 16:38:16,612 - Phyluce - INFO - ——————————————————— Working on triCasl
—genome ———--— - oo oo
2016-06-03 16:38:16,613 - Phyluce - INFO - Reading triCasl genome
2016-06-03 16:38:32,786 — Phyluce - INFO - triCasl: 1172 uces, 70 dupes, 1102 non-—
—dupes, 13 orient drop, 13 length drop, 1076 written

84

Ch

apter 3. Guide

phyluce documentation, Release 1.7.0

Match contigs to baits

In the step above, we essentially extracted FASTA data for each taxon, and wrote those out into individual FASTA
files. These are the equivalent of the assembled contigs that we use in the standard phyluce pipeline, so now, we’re
going to use that workflow. Note that the filtering in phyluce_assembly_match_contigs_to_probes is more strict that
what we used above to identify contigs.

> phyluce_assembly_match_contigs_to_probes \
-—contigs coleoptera—-genome-fasta \
~—probes ../probe-design/coleoptera-vl-master-probe-1ist-DUPE-SCREENED.fasta \
-—output in-silico-lastz \
--min_coverage 67 \
—-—log-path log

2016-06-03 16:40:36,888 — phyluce_assembly_match_contigs_to_probes - INFO - agrplal:
—903 (87.16%) uniques of 1036 contigs, 0 dupe probe matches, 116 UCE loci removed,,
—for matching multiple contigs, 117 contigs removed for matching multiple UCE loci
2016-06-03 16:41:06,688 - phyluce_assembly_match_contigs_to_probes - INFO - anoglal:
—927 (88.54%) uniques of 1047 contigs, 0 dupe probe matches, 111 UCE loci removed,,
—for matching multiple contigs, 116 contigs removed for matching multiple UCE loci
2016-06-03 16:41:28,524 - phyluce_assembly_match_contigs_to_probes - INFO - denponl:
—819 (87.59%) uniques of 935 contigs, 0 dupe probe matches, 85 UCE loci removed for
—matching multiple contigs, 89 contigs removed for matching multiple UCE loci
2016-06-03 16:41:54,879 - phyluce_assembly_match_contigs_to_probes - INFO - lepdecl:
—900 (91.28%) uniques of 986 contigs, 0 dupe probe matches, 80 UCE loci removed for
—matching multiple contigs, 81 contigs removed for matching multiple UCE loci
2016-06-03 16:42:05,300 - phyluce_assembly_match_contigs_to_probes - INFO - menmoll:
527 (76.27%) uniques of 691 contigs, 0 dupe probe matches, 58 UCE loci removed for
—matching multiple contigs, 58 contigs removed for matching multiple UCE loci
2016-06-03 16:42:29,353 - phyluce_assembly_match_contigs_to_probes - INFO - onttaul:
854 (83.97%) uniques of 1017 contigs, 0 dupe probe matches, 127 UCE loci removed,,
—for matching multiple contigs, 130 contigs removed for matching multiple UCE loci
2016-06-03 16:43:01,303 - phyluce_assembly_match_contigs_to_probes - INFO - tricasl:
934 (86.80%) uniques of 1076 contigs, 0 dupe probe matches, 140 UCE loci removed,,
—for matching multiple contigs, 141 contigs removed for matching multiple UCE loci

Get match counts and extract FASTA information

Now, we need to get the count of matches that we recovered to UCE loci in the probe set, and extract all of the “good”
loci to a monolithic FASTA (see Tutorial I: UCE Phylogenomics if this is not making sense):

phyluce_assembly_get_match_counts \
——locus-db in-silico-lastz/probe.matches.sqglite \
-—taxon-list-config in-silico-coleoptera-taxon-sets.conf \
-—taxon-group 'all' \
-—output taxon-sets/insilico-incomplete/insilico-incomplete.conf \
--log-path log \
——incomplete-matrix

2016-06-03 16:50:02,610 - phyluce_assembly_get_match_counts - INFO - There are 7 taxa,
—in the taxon-group '[all]' in the config file in-silico-coleoptera-taxon-sets.conf
2016-06-03 16:50:02,610 - phyluce_assembly_get_match_counts - INFO - Getting UCE_
—names from database

2016-06-03 16:50:02,617 — phyluce_assembly_get_match_counts - INFO - There are 1172
—~total UCE loci in the database

(continues on next page)

3.3. Phyluce Tutorials 85

https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

(continued from previous page)

2016-06-03 16:50:02,708 - phyluce_assembly_get_match_counts - INFO - Getting UCE_
—matches by organism to generate a INCOMPLETE matrix

2016-06-03 16:50:02,709 - phyluce_assembly_get_match_counts - INFO - There are 1093
—UCE loci in an INCOMPLETE matrix

2016-06-03 16:50:02,709 - phyluce_assembly_get_match_counts - INFO - Writing the taxa,
—and loci in the data matrix to /nfs/datal/working/bfaircloth-insects/coleoptera/
—triCasl+b+strepsiptera-test/taxon-sets/insilico-incomplete/insilico-incomplete.conf

Now, extract the FASTA information for each locus into a monolithic FASTA file:

phyluce_assembly_get_fastas_from_match_counts \
-—contigs ../../coleoptera-genome-fasta \
——locus-db ../../in-silico-lastz/probe.matches.sqglite \
--match-count-output insilico-incomplete.conf \
——output insilico-incomplete.fasta \
~—incomplete-matrix insilico-incomplete.incomplete \
-—-log-path log

Align the conserved locus data

Now, we need to align the sequence data for each conserved locus in our data set. We’ll do this using standard phyluce
tools (mafft). First, change into the working directory:

cd taxon-sets/insilico-incomplete

Now, align the sequences:

phyluce_align_seqcap_align \
-—fasta insilico-incomplete.fasta \
—-—output mafft \
-——taxa 7 \
——incomplete-matrix \
-—cores 12 \
——no-trim \
—-—output-format fasta \
—-—log-path log

Warning: Note that [am using 12 physical CPU cores (—cores) to do this work. You need to use the number of
physical cores available on your machine.

Trim the conserved locus alignments

Still following the standard phyluce workflow, trim the resulting alignments:

phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed \
——alignments mafft \
——output mafft-gblocks \
-—~b1l 0.5 \
--b4 8 \
——cores 12 \
--log log

86 Chapter 3. Guide

https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

Warning: Note that I am using 12 physical CPU cores (—cores) to do this work. You need to use the number of
physical cores available on your machine.

Remove the locus names from each alighment

And, remove the locus names from each of the resulting alignments:

phyluce_align_remove_locus_name_from_files \
-—alignments mafft-gblocks \
——output mafft-gblocks-clean \
-—cores 12 \
—-—log-path log

Warning: Note that I am using 12 physical CPU cores (—cores) to do this work. You need to use the number of
physical cores available on your machine.

Get stats across the aligned loci

Compute stats across the alignments:

python ~/git/phyluce/bin/align/phyluce_align_get_align_summary_data \
——alignments mafft-gblocks-clean \
—-—cores 12 \
-—log-path log

2016-06-03 16:57:11,675 — phyluce_align_get_align_summary_data - INFO - =========
—Starting phyluce_align_get_align_summary_data =========

2016-06-03 16:57:11,675 — phyluce_align_get_align_summary_data - INFO - Version: git
—6ab3adb

2016-06-03 16:57:11,675 - phyluce_align_get_align_summary_data - INFO - Argument —-—
—alignments: triCasl+5+strepsiptera-test/taxon-sets/insilico-incomplete/mafft-
—~gblocks-clean

2016-06-03 16:57:11,675 - phyluce_align_get_align_summary_data - INFO - Argument —-—
—cores: 12

2016-06-03 16:57:11,675 - phyluce_align_get_align_summary_data - INFO - Argument —-—
—input_format: nexus

2016-06-03 16:57:11,675 — phyluce_align_get_align_summary_data - INFO - Argument —-—
—log_path: triCasl+5+strepsiptera-test/taxon-sets/insilico-incomplete/log

2016-06-03 16:57:11,676 — phyluce_align_get_align_summary_data - INFO - Argument --—
—output: None

2016-06-03 16:57:11,676 - phyluce_align_get_align_summary_data - INFO - Argument —-—
—~show_taxon_counts: False

2016-06-03 16:57:11,676 — phyluce_align_get_align_summary_data - INFO - Argument —-—
—verbosity: INFO

2016-06-03 16:57:11,676 — phyluce_align_get_align_summary_data - INFO - Getting,
—alignment files

2016-06-03 16:57:11,710 — phyluce_align_get_align_summary_data - INFO - Computing
—summary statistics using 12 cores

2016-06-03 16:57:15,381 - phyluce_align_get_align_summary_data - INFO - ———-——————————
G —— Alignment summary ———————————————————————

2016-06-03 16:57:15,382 - phyluce_align_get_align_summary_data - INFO - [Alignments],
—loci: 994

(continues on next page)

3.3. Phyluce Tutorials 87

phyluce documentation, Release 1.7.0

(continued from previous page)

2016-06-03 16:57:15,382 - phyluce_align_get_align_summary_data INFO - [Alignments]
—length: 644,447

2016-06-03 16:57:15,382 — phyluce_align_get_align_summary_data INFO — [Alignments]
—mean: 648.34

2016-06-03 16:57:15,383 - phyluce_align_get_align_summary_data INFO - [Alignments]
—95% CI: 9.39

2016-06-03 16:57:15,383 - phyluce_align_get_align_summary_data INFO — [Alignments]
—min: 240

2016-06-03 16:57:15,383 - phyluce_align_get_align_summary_data INFO - [Alignments]
—max: 1,444

2016-06-03 16:57:15,383 - phyluce_align_get_align_summary_data INFO - —
———— Informative Sites summary ———————————————————

2016-06-03 16:57:15,384 - phyluce_align_get_align_summary_data INFO - [Sites] loci: |
— 994

2016-06-03 16:57:15,384 - phyluce_align_get_align_summary_data INFO - [Sites],,
—total: 169,024

2016-06-03 16:57:15,384 - phyluce_align_get_align_summary_data INFO - [Sites] mean:
- 170.04

2016-06-03 16:57:15,384 - phyluce_align_get_align_summary_data INFO - [Sites] 95%,
—~CI: 4.48

2016-06-03 16:57:15,384 — phyluce_align_get_align_summary_data INFO — [Sites] min: |
- 0

2016-06-03 16:57:15,384 - phyluce_align_get_align_summary_data INFO - [Sites] max:
— 390

2016-06-03 16:57:15,386 — phyluce_align_get_align_summary_data INFO — ——————————————
o Taxon summary —————————————————————————

2016-06-03 16:57:15,386 — phyluce_align_get_align_summary_data INFO - [Taxa] mean:
. 5.76

2016-06-03 16:57:15,386 - phyluce_align_get_align_summary_data INFO - [Taxa] 95%_
—CI: 0.07

2016-06-03 16:57:15,386 — phyluce_align_get_align_summary_data INFO - [Taxa] min:
. 3

2016-06-03 16:57:15,386 — phyluce_align_get_align_summary_data INFO - [Taxa] max: o
— 7

2016-06-03 16:57:15,387 — phyluce_align_get_align_summary_data INFO — ——————————————
———— Missing data from trim summary ——————————————

2016-06-03 16:57:15,387 — phyluce_align_get_align_summary_data INFO - [Missing],_,
—mean: 0.00

2016-06-03 16:57:15,387 - phyluce_align_get_align_summary_data INFO — [Missing] 95%
—CT: 0.00

2016-06-03 16:57:15,387 — phyluce_align_get_align_summary_data INFO - [Missing],
—min: 0.00

2016-06-03 16:57:15,387 - phyluce_align_get_align_summary_data INFO - [Missing],
—max: 0.00

2016-06-03 16:57:15,399 - phyluce_align_get_align_summary_data INFO — ——————————————
s ———— Character count summary ————————————————————

2016-06-03 16:57:15,399 - phyluce_align_get_align_summary_data INFO - [All
—characters] 3,655,040

2016-06-03 16:57:15,399 - phyluce_align_get_align_summary_data INFO - [Nucleotides]
. 3,518,743

2016-06-03 16:57:15,400 - phyluce_align_get_align_summary_data INFO — ——————————————
——— Data matrix completeness summary ———————————————

2016-06-03 16:57:15,400 - phyluce_align_get_align_summary_data INFO - [Matrix 50%]
- 946 alignments

2016-06-03 16:57:15,400 - phyluce_align_get_align_summary_data INFO - [Matrix 55%]
— 946 alignments

2016-06-03 16:57:15,400 - phyluce_align_get_align_summary_data INFO — [Matrix 60%] |
o 865 alignments (continues on next page)
88 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

2016-06-03
2016-06-03
—
2016-06-03
—
2016-06-03
2016-06-03
—
2016-06-03
—
2016-06-03

2016-06-03

2016-06-03

—characters]

2016-06-03

2016-06-03

16:57:15,400 - phyluce_align_get_align_summary_data
865 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
865 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
657 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
657 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
657 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
275 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
275 alignments

16:57:15,401 - phyluce_align_get_align_summary_data

- Character counts ————""""""--—————
16:57:15,399 - phyluce_align_get_align_summary_data

3,655,040

16:57:15,399 - phyluce_align_get_align_summary_data
3,518,743

16:57:15,400 - phyluce_align_get_align_summary_data

——— Data matrix completeness summary ———————————————

2016-06-03
5816—06—03
5816706703
5816706*03
5816—06—03
5816706703
5816706703
5816—06—03
5816706703
5816706703

—

2016-06-03

16:57:15,400 - phyluce_align_get_align_summary_data
946 alignments

16:57:15,400 - phyluce_align_get_align_summary_data
946 alignments

16:57:15,400 - phyluce_align_get_align_summary_data
865 alignments

16:57:15,400 - phyluce_align_get_align_summary_data
865 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
865 alignments

16:57:15,401 — phyluce_align_get_align_summary_data
657 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
657 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
657 alignments

16:57:15,401 — phyluce_align_get_align_summary_data
275 alignments

16:57:15,401 - phyluce_align_get_align_summary_data
275 alignments

16:57:15,401 - phyluce_align_get_align_summary_data

- Character counts ———————————————————————

INFO - [Matrix 65%]
INFO - [Matrix 70%]
INFO - [Matrix 75%]
INFO - [Matrix 80%]
INFO - [Matrix 85%]
INFO - [Matrix 90%]
INFO - [Matrix 95%]
INFO - ——————————————
INFO - [All,

INFO — [Nucleotides],
INFO - ——————————————
INFO - [Matrix 50%]
INFO - [Matrix 55%]
INFO — [Matrix 60%]
INFO — [Matrix 65%]
INFO - [Matrix 70%]
INFO - [Matrix 75%]
INFO - [Matrix 80%]
INFO - [Matrix 85%]
INFO - [Matrix 90%]
INFO - [Matrix 95%]

INFO — —————————————

2016-06-03 16:57:15,401 - phyluce_align_get_align_summary_data
—'=" is present 136,297 times

2016-06-03 16:57:15,402 - phyluce_align_get_align_summary_data - INFO

—'A'" is present 1,047,965 times

2016-06-03 16:57:15,402 - phyluce_align_get_align_summary_data - INFO

—'C' is present 708,469 times

2016-06-03 16:57:15,402 - phyluce_align_get_align_summary_data - INFO

—'G"'" is present 706,567 times

2016-06-03 16:57:15,402 - phyluce_align_get_align_summary_data - INFO

—'T'" is present 1,055,742 times

2016-06-03 16:57:15,402 - phyluce_align_get_align_summary_data - INFO

—Completed phyluce_align_get_align_summary_data

INFO - [Characters]

[Characters]

[Characters]

[Characters]

[Characters]

3.3. Phyluce Tutorials

89

phyluce documentation, Release 1.7.0

Warning: Note that I am using 12 physical CPU cores (—cores) to do this work. You need to use the number of
physical cores available on your machine.

Generate an incomplete matrix

Now, given the alignments that we have, let’s generate a 70% complete matrix:

phyluce_align_get_only_loci_with_min_taxa \
—-—alignments mafft-gblocks-clean \
-—taxa 7 \
——output mafft-gblocks-70p \
—--percent 0.75 \
——cores 12 \
-—log log

2016-06-03 16:58:19,687 - phyluce_align_get_only_loci_with_min_taxa - INFO - Copied,
865 alignments of 994 total containing > 0.75 proportion of taxa (n = 5)

Warning: Note that I am using 12 physical CPU cores (—cores) to do this work. You need to use the number of
physical cores available on your machine.

Prep raxml files, run raxml ML searches, and reconcile best tree w/ bootreps

Setup the PHYLIP-formatted files for raxml:

phyluce_align_concatenate_alignments \
——alignments mafft-gblocks-70p \
——output mafft-gblocks-70p-raxml \
--log-path log —--phylip

Now, run raxml against this phylip file

raxmlHPC-PTHREADS-SSE3 -m GTRGAMMA -N 20 -p 772374015 -n BEST -s mafft-gblocks-70p.
—phylip -o menmoll -T 10

raxml/raxmlHPC-PTHREADS-SSE3 -m GTRGAMMA -N autoMRE -p 772374015 -b 444353738 -n,
—bootrep -s mafft-gblocks-70p.phylip -0 menmoll -T 10

Warning: Note that I am using 10 physical CPU cores (—cores) to do this work. You need to use the number of
physical cores available on your machine.

Now, reconcile the best ML tree w/ the bootreps:

raxmlHPC-SSE3 -f b \
-m GTRGAMMA \
-t RAXML_bestTree.BEST \
-z RAXML_bootstrap.bootrep \
-n FINAL -o menmoll

And rename the tips. To do this, setup a config file with the old and new names, like:

920 Chapter 3. Guide

phyluce documentation, Release 1.7.0

[all]

agrplal:Agrilus planipennis (emerald ash borer)
anoglal:Anoplophora glabripennis (Asian longhorned beetle)
denponl:Dendroctonus ponderosae (mountain pine beetle)
lepdecl:Leptinotarsa decemlineata (Colorado potato beetle)
menmoll:Mengenilla moldrzyki (Strepsiptera)
onttaul:0Onthophagus taurus (taurus scarab)
tricasl:Tribolium castaneum (red flour beetle)

And rename the tips:

phyluce_genetrees_rename_tree_leaves \
—-—order left:right \
——input-format newick \
——output-format newick \
-—config rename.conf \
--section all \
——input RAXML_bipartitions.FINAL \
——output RAxML_bipartitions.NAME.FINAL.tre

3.4 Phyluce in Daily Use

3.4.1 Quality Control

When you receive your data from the sequencer, typically they are already demultiplexed (split by sequence tags) for
you. If your data are from the MiSeq, they may also have been trimmed of adapter contamination.

Note: If your data are not demultiplexed, they can come in a vast array of different types, although one common
type are so-called BCL-files. Regardless, if your data are not demultiplexed fastq files, you will need to talk to your
sequencing provider about how to accomplish demultiplexing. I provide an unsupported guide to demultiplexing
BCL files using Casava or bcl2fastq here and a guide to demultiplexing fastq data here

Regardless, you need to do a fair bit of quality control on your read data. At a minimum, this includes:
* getting some idea of how much data you have
* trimming adapter contamination of reads
* trimming low quality bases from reads

Although the MiSeq may trim some adapter contamination, running your reads through an additional round of trim-
ming won’t hurt. There is also lots of evidence showing that quality control of your read data has a large effect on
your overall success, particularly for the most common way of working with data in phyluce. Bottom line is: garbage
in, garbage out.

Read Counts
The first thing to do once you have your read data in hand is to to get an idea of the split of reads among your samples.
This does two things:

1. Allows you to determine how well you split the run among your indexes/sequence tags

2. Shows you which samples may be suboptimal (have very few reads)

3.4. Phyluce in Daily Use 91

http://www.illumina.com/systems/miseq.ilmn
http://support.illumina.com/sequencing/sequencing_software/casava.ilmn
https://gist.github.com/brantfaircloth/3125885
http://protocols.faircloth-lab.org/en/latest/protocols-computer/sequencing/sequencing-demultiplex-a-run.html
http://scholar.google.com/scholar?q=sequence+quality+affects+short+read+assembly&btnG=&hl=en&as_sdt=0%2C5
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

Really unequal read counts mean that you may want to switch up your library quantification process (or your pooling
steps, prior to enrichment). Suboptimal read counts for particular libraries may or may not mean that the enrichments
of those samples “failed”, but it’s generally a reasonable indication.

You can get read counts in one of two way - the first is very simple, the second uses phyluce.

Count reads using shell tools

You can get a quick and dirty idea of the number of reads you have for each sample using simple shell or “terminal”
tools - counting lines in lots of files is a task that’s really suited to UNIX-like operating systems. As mentioned in
Tutorial I: UCE Phylogenomics section, we can do this several ways. We’ll use tools from unix, because they are fast.
The next line of code will count the lines in each R1 file (which should be equal to the reads in the R2 file) and divide
that number by 4 to get the number of sequence reads.

for i in »_R1_x.fastg.gz; do echo $i; gunzip -c $i | wc -1 | awk '{print $1/4}'; done

The number of reads in the R2 files, if you have paired-end data, should always be equal.

Get read counts using phyluce

There is a bit of code in phyluce that lets you count reads. To use it, you pass the code the directory containing reads
you want to summarize and run:

phyluce_assembly_get_fastg lengths —-—-input /directory/containing/reads/ —--csv; done

You can run this across many directories of reads as described in Tutorial I: UCE Phylogenomics.

Adapter- and quality-trimming

Generally speaking, Casava and bcl2fastq, the two programs used to demultiplex sequence data from Illumina plat-
forms, output fastq files in a format similar to the following:

Project_name/

Sample_BFIDT-000
BFIDT-000_AGTATAGCGC_LOO1_R1_001.fastqg.gz
BFIDT-000_AGTATAGCGC_LO001_R2_001.fastqg.gz

Sample_BFIDT-001
BFIDT-001_TTGTTGGCGG_LOO1_R1_001.fastqg.gz
BFIDT-001_TTGTTGGCGG_LO01_R2_001.fastq.gz

What you want to do is to clean these reads of adapter contamination and trim low-quality bases from all reads (and
probably also drop reads containing “N” (ambiguous) bases. Then you want to interleave the resulting data, where
read pairs are maintained, and also have an output file of singleton data, where read pairs are not.

You can do this however you like. phyluce assumes that the results structure of your data after trimming will look like
the following (replace genus_species with your taxon names):

genus_speciesl/
split-adapter—quality-trimmed/
genus_speciesl-READ1. fastqg.gz
genus_speciesl-READ2.fastqg.gz
genus_speciesl-READ-singleton.fastqg.gz
genus_species2/
split—-adapter—quality-trimmed/

(continues on next page)

92 Chapter 3. Guide

https://github.com/faircloth-lab/phyluce
http://support.illumina.com/sequencing/sequencing_software/casava.ilmn
https://support.illumina.com/downloads/bcl2fastq_conversion_software_184.ilmn
http://www.illumina.com/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

(continued from previous page)

genus_species2-READ1.fastqg.gz
genus_species2-READ2.fastq.gz
genus_species2-READ-singleton.fastqg.gz

This can be accomplished in an automated fashion using illumiprocessor.

Trimming with illumiprocessor

You can run your adapter and quality trimming and output the files in the correct format using a program I wrote
called illumiprocessor. It automates these processes over hundred of files and produces output in the format we want
downstream.

You need to generate a configuration file your-illumiprocessor.conf, that gives details of your reads, how
you want them processed, and what renaming options to use. There are several variations in formatting required
depending on the library preparation method that you used.

Attention: See the documentation for illumiprocessor for configuration information.

You can run illumiprocessor against your data (in demultiplexed) with the following. If you do not have a multicore
machine, you may want to run with ——cores=1. Additionally, multicore operations require a fair amount of RAM,
so if you’re low on RAM, run with fewer cores:

illumiprocessor \
——input demultiplexed \
—-—output uce-clean \
——-config your—illumiprocesser.conf \
——cores 12

The clean data will appear in uce—clean with the following structure:

uce-clean/
genus_speciesl/

adapters.fasta

raw-reads/
genus_speciesl-READ1.fastg.gz (symlink)
genus_speciesl-READ2.fastqg.gz (symlink)

split—-adapter—-quality-trimmed/
genus_speciesl-READ1l.fastg.gz
genus_speciesl-READ2.fastg.gz
genus_speciesl-READ-singleton.fastg.gz

stats/
genus_speciesl-adapter—-contam.txt

genus_species2/

adapters.fasta

raw-reads/
genus_species2-READ1.fastqg.gz (symlink)
genus_species2-READ2.fastqg.gz (symlink)

split—-adapter—-quality-trimmed/
genus_species2-READ1.fastg.gz
genus_species2-READ2.fastg.gz
genus_species2-READ-singleton.fastqg.gz

(continues on next page)

3.4. Phyluce in Daily Use 93

https://github.com/faircloth-lab/illumiprocessor/
https://github.com/faircloth-lab/illumiprocessor/
https://github.com/faircloth-lab/illumiprocessor/

phyluce documentation, Release 1.7.0

(continued from previous page)

stats/
genus_species2—-adapter-contam.txt

You are now ready to move onto Assembly of the cleaned read data.

3.4.2 Assembly

Setup
Once your reads are clean, you're ready to assemble. At the moment, you can use velvet, ABySS, and spades for
assembly.
Most of the assembly process is automated using code within phyluce, specifically the following 3 scripts:
e phyluce_assembly_assemblo_abyss
* phyluce_assembly_assemblo_spades
* phyluce_assembly_assemblo_velvet

The code of each of the above programs always expects your input directories to have the following structure (from
the Quality Control section):

uce-clean/
genus_speciesl/

adapters.fasta

raw-reads/
genus_speciesl-READ1.fastg.gz (symlink)
genus_speciesl-READ2.fastg.gz (symlink)

split-adapter—-quality-trimmed/
genus_speciesl-READ1.fastg.gz
genus_speciesl-READ2.fastg.gz
genus_speciesl-READ-singleton.fastqg.gz

stats/
genus_speciesl-adapter—-contam.txt

And, each of these assembly helper programs take the same configuration files as input. You should format the
configuration file for input according to the following scheme:

[samples]
name_you_want_assembly_to_have:/path/to/uce-clean/genus_speciesl

In practice, this means you need to create a configuration file that looks like:

[samples]
anas_platyrhynchosl:/path/to/uce-clean/anas_platyrhynchosl
anas_carolinensisl:/path/to/uce-clean/anas_carolinensisl
dendrocygna_bicolorl:/path/to/uce-clean/dendrocygna_bicolorl

The assembly name on the left side of the colon can be whatever you want. The path name on the right hand side of
the colon must be a valid path to a directory containing read data in a format similar to that described above.

Attention: Assembly names MUST be unique.

94 Chapter 3. Guide

http://www.ebi.ac.uk/~zerbino/velvet/
http://www.bcgsc.ca/platform/bioinfo/software/abyss
https://cab.spbu.ru/software/spades/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

Question: How do I name my samples/assemblies?

Naming samples is a contentious issue and is also a hard thing to deal with using computer code. You should never
have a problem if you name your samples as follows, where the genus and specific epithet are separated by an under-
score, and multiple individuals of a given species are indicated using a trailing integer value:

anas_platyrhynchosl
anas_carolinensisl
dendrocygna_bicolorl

You should also not have problems if you use a naming scheme that suffixes the species binomial(s) with an accession
number that is simply formatted (e.g. no slashes, dashes, etc.):

anas_platyrhynchos_KGH2267
anas_carolinensis_KGH2269
dendrocygna_bicolor DWF4597

The above is the recommended working format. When you search for UCE contigs phyluce should screen your taxon
name to ensure they do not contain restricted characters. This includes . +:"'—=?!x@%"&#=/\ or names that begin
with a number. It’s probably best to get that all squared away now.

Running the assembly

Once your configuration file is created (best to use a decent text editor that will not cause you grief), you are ready
to start assembling your read data into contigs that we will search for UCEs. The code to do this for the three helper
scripts is below.

General process

The general process that the helper scripts use is:
1. Create the output directory (AKA $ASSEMBLY, below)
Create a cont igs folder within the output directory
For each taxon create SASSEMBLY /genus—species directory, based on config file entries
Find the correct fastq files for a given sample
Input those fastq files to whichever assembly program
Assemble reads
Strip contigs of potentially problematic bases (ABySS-only)

Normalize contig names

o ® N A » N

Link all assembly files with normalized names in $ASSEMBLY/genus-species/ into
$ASSEMBLY/contigs/genus-species.contigs.fasta, so that all assemblies are linked in the same output
directory.

velvet

3.4. Phyluce in Daily Use 95

https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

make a directory for log files
mkdir log
run the assembly
phyluce_assembly_assemblo_velvet \
-—config config_file_you_created.conf \
—-—output /path/where/you/want/assemblies \
——kmer 35 \
—-—subfolder split-adapter—-quality-trimmed \
—--cores 12 \
——clean \
-—-log-path log

Results

The directory structure created for velvet-based assemblies looks like:

path-to-output-directory/
contigs/
genus-speciesl -> ../genus-speciesl/out_k31l/contigs.fa
genus-speciesl/
contigs.fasta —-> out_k31/contigs.fa
out_k31
velvetg-k3l.err.log
velvetg-k3l.out.log
velveth-k3l.err.log
velveth-k31l.out.log

ABySS

make a directory for log files
mkdir log
run the assembly
phyluce_assembly_assemblo_abyss \
—-config config_file_you_created.conf \
-—output /path/where/you/want/assemblies \
——kmer 35 \
—-subfolder split-adapter—-quality-trimmed \
—-—cores 12 \
—-—clean \
—-—log-path log

Attention: Following assembly, phyluce_assembly_assemblo_abyss modifies the assemblies by replacing degen-
erate base codes with standard nucleotide encodings. We do this because lastz, which we use to match contigs to
targeted UCE loci, is not compatible with degenerate [IUPAC codes.

The phyluce_assembly_assemblo_abyss code makes these substitutions for every site having a degenerate code by
selecting the appropriate nucleotide encoding randomly. The code also renames the ABySS assemblies using the
velvet naming convention. The modified contigs are them symlinked into $ASSEMBLY/contigs. Unmodified
contigs are available in SASSEMBLY /genus— species/out_kx-contigs.fa

96 Chapter 3. Guide

http://www.ebi.ac.uk/~zerbino/velvet/
http://www.bx.psu.edu/~rsharris/lastz/
http://www.ebi.ac.uk/~zerbino/velvet/

phyluce documentation, Release 1.7.0

Results

The directory structure created for ABySS-based assemblies looks like:

path-to-output-directory/
contigs/
genus-speciesl -> ../genus-speciesl/out_k31l-contigs-velvet.fa
genus-speciesl/
abyss—-k3l.err.log
contigs.fasta —-> out_k3l-contigs-velvet.fa
out_k3l-contigs. fa
out_k3l-scaffolds.fa
out_k3l-unitigs. fa
abyss—-k31l.out.log
coverage.hist
out_k31l-contigs-velvet.fa
out_k3l-stats

Spades

make a directory for log files
mkdir log
run the assembly
phyluce_assembly_assemblo_spades \
—-—config config_file_you_created.conf \
-—output /path/where/you/want/assemblies \
—-subfolder split-adapter—-quality-trimmed \
——clean \
—--cores 12 \
—-—log-path log

Results

The directory structure created for spades-based assemblies looks like:

path-to-output-directory/
contigs/
genus-speciesl —> ../genus-speciesl/scaffolds.fasta
genus-speciesl/
contigs.fasta —-> Trinity.fasta
Trinity.fasta
trinity.log

Common questions

Question: Which assembly program do I pick?

Generally, I would suggest that you use spades. It produces reasonable contig assemblies that are longer than the
assemblies built by velvet, ABySS, or Trinity (now removed from phyluce). It arguable produces assemblies that are
more accurate than assemblies from these other programs.

3.4. Phyluce in Daily Use 97

http://www.bcgsc.ca/platform/bioinfo/software/abyss
https://cab.spbu.ru/software/spades/
https://cab.spbu.ru/software/spades/
http://www.ebi.ac.uk/~zerbino/velvet/
http://www.bcgsc.ca/platform/bioinfo/software/abyss
http://trinityrnaseq.sourceforge.net/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

Question: For ABySS and velvet, what —kmer value do I use?

Also a hard question. Part of the reason that it is hard is due to the fact that we are trying to assemble data of
heterogenous read depth (i.e., our reads are spread across (mostly) UCE loci, but the depth of coverage of each locus
is varaible due to capture efficiency). Longer kmer values can give you longer (but fewer) contigs, while shorter kmer
values produce fewer, more abundant contigs. In most cases, your assemblies will be decent with a kmer value around
55-65.

3.4.3 UCE Processing for Phylogenomics

The process described below is meant for users who are analyzing UCE data in phylogenetic contexts - meaning that
you are interested in addressing questions at or deeper than the species-level.

Identifying UCE loci

Once we have assembled our fastq data (see Assembly), we need to process those contigs to (a) determine which
represent enrichend UCE loci and (b) remove any potential paralogs from the data set. Before we can do that, we need
to to a little preparatory work by downloading a FASTA file representing the bait/probe set that we used.

Get the probe set FASTA

To identify which of the contigs we’ve assembled are UCE loci (and which UCE loci they might be), we are going
to match our assembled contigs to the probes we used to enrich UCE loci. Before we do that, however, we need to
download a copy of probe set we used for matching purposes.

Attention: We archive official probe sets at https://github.com/faircloth-lab/uce-probe-sets/, but you need to be
careful about which one you grab - probe sets can be of different sizes (e.g. 2,500 or 5,500 loci) and for different
groups of taxa (e.g., amniotes, fish)

Download the probe set

To download a given probe set for phyluce, you need to figure out which probe set you need. Then, you can use a
command like wget on the command-line (or navigate with your browser to the URL and save the file):

to get the 2.5k, amniote probe set
wget https://raw.githubusercontent.com/faircloth-lab/uce-probe-sets/master/uce-2.5k—-
—probe-set/uce-2.5k-probes.fasta

to get the 5k, amniote probe set
wget https://raw.githubusercontent.com/faircloth-lab/uce-probe-sets/master/uce-5k—
—probe-set/uce-5k-probes.fasta

Match contigs to probes

Once we’ve downloaded the probe set we used to enrich UCE loci, we need to find which of our assembled contigs are
the UCE loci that we enriched. During this process, the code will also remove any contigs that appear to be duplicates
as a result of assembly/other problems or a biological event(s).

98 Chapter 3. Guide

https://github.com/faircloth-lab/uce-probe-sets/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

The way that this process works is that phyluce aligns (using lastz) the contigs you assembled to the probes you input
on a taxon-by-taxon (or otu-by-otu)

basis. Then, the code parses the alignment file to determine which contigs

matched which probes, whether any probes from a single locus matched multiple contigs or whether a single contig
matched probes designed from muliple UCE loci. Either of these latter two events suggests that the locus in question
is problematic.

Hint: ADVANCED: The default regular expression assumes probes in your file are named according to
uce—-NNN_pN, where uce- is just a text string, NNN is an integer value denoting each unique locus, _p is a text
string denoting a “probe” targeting locus NNN, and the trailing N is an integer value denoting each unique probe
targeting the same locus.

If you are using a custom probe file, then you will either need to ensure that your naming scheme conforms to this
approach OR you will need to input a different regular expression to convert the probe names to locus names using
the ——regex flag. It is up to you to determine what is the appropriate regular expression.

To identify which of your assembled contigs are UCE contigs, run:

make a directory for log files

mkdir log

match contigs to probes

phyluce_assembly_match_contigs_to_probes \
—--contigs /path/to/assembly/contigs/ \
——probes uce-5k-probes.fasta \
—-—output /path/to/uce/output \
—-—-log-path log

When you run this code, you should see output similar to:

2014-04-24 14:38:15,979 - match_contigs_to_probes - INFO - Starting,,
—match_contigs_to_probes
2014-04-24 14:38:15,979 - match_contigs_to_probes INFO - Version: git 7aec8fl
2014-04-24 14:38:15,979 - match_contigs_to_probes - INFO - Argument —--contigs: /path/
<»to/assembly/contigs/

2014-04-24 14:38:15,980 - match_contigs_to_probes
—duplicates: None

2014-04-24 14:38:15,980 - match_contigs_to_probes - INFO - Argument —--log_path: None
2014-04-24 14:38:15,980 - match_contigs_to_probes INFO - Argument —--min_coverage: 80
2014-04-24 14:38:15,980 - match_contigs_to_probes - INFO - Argument --min_identity: 80
2014-04-24 14:38:15,980 — match_contigs_to_probes - INFO - Argument —--output: /path/
—to/uce/output

2014-04-24 14:38:15,980 - match_contigs_to_probes - INFO - Argument —--probes: uce-5k-—
—probes.fasta

2014-04-24 14:38:15,981 - match_contigs_to_probes
—\d+) (?2:_p\d+.x)

2014-04-24 14:38:15,981 - match_contigs_to_probes - INFO - Argument --verbosity: INFO
2014-04-24 14:38:16,138 — match_contigs_to_probes INFO - Checking probe/bait,
—sequences for duplicates

2014-04-24 14:38:19,022 - match_contigs_to_probes - INFO - Creating the UCE-match
—database

2014-04-24 14:38:19,134 - match_contigs_to_probes - INFO - Processing contig data
2014-04-24 14:38:19,134 - match_contigs_to_probes - INFO - ——————————————————————————

INFO - Argument —-keep_

INFO - Argument —--regex: " (uce-

2014-04-24 14:38:25,713 - match_contigs_to_probes - INFO - genus_speciesl: 1031 (70.14
—%) uniques of 1470 contigs, 0 dupe probe matches, 48 UCE probes matching multiple,,

4 149 — — LI | PSP 1
—CUOITCTIUSy, T COITTTyY MaCTITTIIg MuUTItTIpTIe UCLEL Prole (Contlnues on nextpage)

3.4. Phyluce in Daily Use 99

https://github.com/faircloth-lab/phyluce
http://www.bx.psu.edu/~rsharris/lastz/

phyluce documentation, Release 1.7.0

(continued from previous page)

2014-04-24 14:38:32,846 — match_contigs_to_probes - INFO - genus_species2: 420 (68.52
—%) uniques of 613 contigs, 0 dupe probe matches, 30 UCE probes matching multiple,
—contigs, 19 contigs matching multiple UCE probes

2014-04-24 14:38:39,184 - match_contigs_to_probes - INFO - genus_species3: 1071 (63.15
—%) uniques of 1696 contigs, 0 dupe probe matches, 69 UCE probes matching multiple,,
—~contigs, 101 contigs matching multiple UCE probes
2014-04-24 14:49:59,654 - match_contigs_to_probes - INFO

2014-04-24 14:49:59,654 - match_contigs_to_probes - INFO - The LASTZ alignments are,
—1in /path/to/uce/output/

2014-04-24 14:49:59,654 - match_contigs_to_probes - INFO
—in /path/to/uce/output/probe.matches.sqglite

2014-04-24 14:49:59,655 - match_contigs_to_probes - INFO - Completed
—match_contigs_to_probes

The UCE match database is_,

Note: The . 1og files for each operation are always printed to the screen AND also written out to the $CWD (current
working directory). You can keep these files more orderly by specifying a $L.OG on the command line using the
—-—log-path option.

Results

The resulting files will be in the:

/path/to/output

directory. If you look in this directory, you’ll see that it contains species- specific lastz_ files as well as an sqlite
database:

$ 1ls /path/to/output

genus_speciesl.contigs.lastz
genus_species2.contigs.lastz
genus_species3.contigs.lastz
probe.matches.sqglite

The « . lastz files within the /path/to/output directory are basically for reference and individual review (they
are text files that you can open using a text editor to view). The really important data from the lastz files are summarized
in the:

probe.matches.sqglite

database file. It’s probably a good idea to have some knowledge of how this database is structured, since it’s basically
what makes the next few steps work. So, let’s go over the structure and contents of this database.

The probe.matches.sqlite database

probe.matches.sqglite is arelational database that summarizes all valid matches of contigs to UCE loci across
the set of taxa that you fed it. The database is created by and for a program named sqlite, which is a very handy,
portable SQL database. For more info on SQL and SQLITE, see this sqlite-tutorial. I’ll briefly cover the database
contents and use below.

First, take a look at the contents of the database by running:

100 Chapter 3. Guide

http://www.sqlite.org
http://www.bx.psu.edu/~rsharris/lastz/
http://en.wikipedia.org/wiki/Relational_database
http://www.sqlite.org
http://www.sqlite.org/sqlite.html

phyluce documentation, Release 1.7.0

sglite3 probe.matches.sqglite

You’ll now see something like:

SQLite version 3.7.3

Enter ".help" for instructions

Enter SQL statements terminated with a ";"
sgqlite>

It’s often easier to change some defaults for better viewing, so at the prompt, paste in the following:

sgqlite> .mode columns
sglite> .headers on
sglite> .nullvalue

Tip: For more info on sqlite “dot” commands, you can type .help.

Now that that’s done, let’s see which tables the database contains by running the . tables command:

sqgqlite> .tables
match_map matches

This tells us there’s two tables in the database, named match_map and matches.

The matches table

Let’s take a look at the contents of the mat ches table. Once you’ve started the sqlite interface, run:

sglite> SELECT » FROM matches LIMIT 10;

This query select all rows (SELECT) from the matches table (FROM matches) and limits the number of re-
turned rows to 10 (LIMIT 10). This will output data that look something like:

uce genus_speciesl genus_species2 genus_species3

c
Q
(0]
|
ol
o
-
—

Basically, what this indicates is that you enriched 9 of 10 targeted UCE loci from genus_speciesl, 3 of 10 UCE
loci in the list from genus_species2, and 2 of 10 UCE loci from genus_species3. The locus name is given
in the uce column. Remember that we’ve limited the results to 10 rows for the sake of making the results easy to
view.

If we wanted to see only those loci that enriched in all species, we could run:

3.4. Phyluce in Daily Use 101

http://www.sqlite.org

phyluce documentation, Release 1.7.0

sglite> SELECT » FROM matches WHERE genus_speciesl = 1
...> AND genus_species2 = 1 AND genus_species3 = 1;

Assuming we only had those 10 UCE loci listed above in the database, if we ran this query, we would see something
like:

uce genus_speciesl genus_species2 genus_species3
uce—-503 1 1 1
uce-509 1 1 1

Basically, the mat ches table and this query are what we run to generate complete (only loci enriched in all taxa) and
incomplete (all loci enriched from all taxa) matrices very easily and quickly (see Creating a data matrix configuration

file).

The match_map table

The match_map table shows us which species-specific, contigs match which UCE loci. Because each assembly
program assigns an arbitrary designator to each assembled contig, we need to map these arbitrary designators (which
also differ for each taxon/OTU) to the UCE locus to which it corresponds. Because assembled contigs are also not in
any particular orientation relative to each other across taxa/OTUs (i.e., they may be 5° - 3’ or 3’ - 5°), the database also
records the orientation of all contigs relative to orientation of each probe in the probes file.

Let’s take a quick look at the match_map table:

SELECT FROM match_map LIMIT 10;

This query is similar to the one that we ran against mat ches and returns the first 10 rows of the mat ch_map table:

uce genus_speciesl genus_species2 genus_species3
uce-500 node_233 (+)

uce—-501 node_830 (+)

uce—-502 node_144 (—) . .

uce-503 node_1676 (+) node_243 (+) node_322 (+)
uce—-504 node_83 (+)

uce-505 node_1165(-)

uce-506 .

uce—-507 node_967 (+) .

uce-508 node_671 (+) node_211 () .

uce-509 node_544 (—) node_297 (+) node_37 (+)

As stated above, these results show which assembled contigs “hit” particular UCE loci. So, if we were to open the
$ASSEMBLY/contigs/genus_speciesl.contigs. fasta symlink the contig named node_1676 corre-
sponds to UCE locus uce-503. Because contigs are named arbitrarily during assembly, this same UCE locus is also
found in genus_species2, but it is named node—-243.

Each entry in the rows also provides the orientation for particular contigs (—) or (+). This orientation is relative to
the orientation of the UCE probes/locus in the source genome (e.g., chicken for tetrapod probes).

We use this table to generate a FASTA file of UCE loci for alignment (see :ref :fasta-file), after we’ve identified the
loci we want in a particular data set (see Creating a data matrix configuration file). The code for this step also uses
the associated orientation data to ensure that all the sequence data have the same orientation prior to alignment (some
aligners will force alignment of all reads using the given orientation rather than also trying the reverse complement
and picking the better alignment of the two).

102 Chapter 3. Guide

phyluce documentation, Release 1.7.0

Now that we know the taxa for which we’ve enriched UCE loci and which contigs we’ve assembled match which UCE
loci, we’re ready to generate some data matrices.

The data matrix generation process consists of two distinct parts:
1. Getting locus counts and generating a taxon set

2. Extracting FASTA data from our $SASSEMBLY/contigs based on the taxon set

Creating a data matrix configuration file

After we identify the UCE loci we enriched, but before we extract fasta data from our SASSEMBLY/contigs
corresponding to those loci, we need to create a data matrix configuration file that denotes (1) which taxa we want to
include in a given analysis and (2) which loci will be included with this taxon set.

The taxa included in the data matrix configuration file are determined by the user - you input a list of taxa you want
to the analysis. The UCE loci included in the data matrix configuration are then determined by the software which
compares the requested taxa to UCE match results in probe .matches.sglite and two flags that you pass either
one requesting complete data matrix or one requesting an incomplete data matrix.

complete matrix A phylogenetic matrix (typically sequence data) in which there are no missing data at
any locus for any taxon/OTU.

incomplete matrix A phylogenetic matrix (typocally sequence data) in which data may be missing from
a given taxon or a given loci (or both).

During the creation of the data matrix configuration file you can also include additional data from pre-existing UCE
match databases and contigs (see :ref :outgroup-data).

We’ll start very simply.

Complete taxon set

First, let’s generate a data matrix configuration file from only the current UCE enrichments that will be complete -
meaning that we will not include loci where certain taxa have no data (either the locus was not enriched for that taxon
or removed during the filtering process for duplicate loci).

To do this, you need to create a starting taxon-configuration file (a text-based file) denoting the taxa we want in the
data set. The taxon-configuration file should look exactly like this (substitute in your taxon names):

[datasetl]
genus_speciesl
genus_species?2
genus_species3

Let’s assume you save this file as datasets.conf. Now, to create the data matrix configuration file from this
taxon-configuration file, run:

create the output directory for this taxon set
mkdir /path/to/uce/taxon-setl/

create the data matrix configuration file
phyluce_assembly_get_match_counts \
—-locus-db /path/to/uce/output/probe.matches.sglite \
——taxon-list-config datasets.conf \
—--taxon—-group 'datasetl' \
—-—-output /path/to/uce/taxon-setl/datasetl.conf

3.4. Phyluce in Daily Use 103

phyluce documentation, Release 1.7.0

This will basically run a query against the database, and pull out those loci for those taxa in the datasets.conf file
having UCE contigs.

Results

The output printed to the screen and $LOG file should look something like:

2014-04-24 17:25:08,145 - get_match_counts - INFO =================== Starting get_
—match_counts ===================

2014-04-24 17:25:08,145 — get_match_counts - INFO - Version: git 7aec8fl

2014-04-24 17:25:08,145 - get_match_counts - INFO - Argument —-extend_locus_db: None
2014-04-24 17:25:08,145 - get_match_counts - INFO - Argument —--incomplete_matrix:
—False

2014-04-24 17:25:08,146 — get_match_counts - INFO - Argument --keep_counts: False
2014-04-24 17:25:08,146 — get_match_counts - INFO - Argument —--locus_db: /path/to/uce/
—output/probes.matches.sqglite

2014-04-24 17:25:08,146 — get_match_counts - INFO - Argument --log_path: /path/to/uce
2014-04-24 17:25:08,146 - get_match_counts - INFO - Argument —--optimize: False
2014-04-24 17:25:08,146 — get_match_counts - INFO - Argument —--output: /path/to/uce/
—taxon-setl/datasetl.conf

2014-04-24 17:25:08,146 - get_match_counts - INFO - Argument --random: False
2014-04-24 17:25:08,146 — get_match_counts - INFO - Argument --sample_size: 10
2014-04-24 17:25:08,146 - get_match_counts - INFO - Argument —-samples: 10

2014-04-24 17:25:08,147 - get_match_counts - INFO - Argument --silent: False
2014-04-24 17:25:08,147 - get_match_counts - INFO - Argument --taxon_group: datasetl
2014-04-24 17:25:08,147 — get_match_counts - INFO - Argument --taxon_list_config:
—datasets.conf

2014-04-24 17:25:08,147 - get_match_counts - INFO - Argument --verbosity: INFO
2014-04-24 17:25:08,150 — get_match_counts - INFO - There are 3 taxa in the taxon-
—group '[datasetl]' in the config file datasetl.conf

2014-04-24 17:25:08,151 - get_match_counts - INFO - Getting UCE names from database
2014-04-24 17:25:08,407 - get_match_counts - INFO - There are 1314 total UCE loci in_
—the database

2014-04-24 17:25:11,046 - get_match_counts - INFO - Getting UCE matches by organism
—to generate a COMPLETE matrix

2014-04-24 17:25:11,051 - get_match_counts - INFO - There are 306 shared UCE loci in_,
—~a COMPLETE matrix

2014-04-24 17:25:11,051 - get_match_counts - INFO - Failed to detect 428 UCE loci,,
—in genus_speciesl
2014-04-24 17:25:11,051 - get_match_counts - INFO - Failed to detect 380 UCE loci,,

—in genus_species?2

2014-04-24 17:52:54,850 - get_match_counts - INFO - Writing the taxa and loci in the
—data matrix to /path/to/uce/taxon-setl/datasetl.conf

2014-04-24 17:52:54,862 - get_match_counts - INFO - =================== Completed get_
—match_counts ==================

This basically says that although we’ve detected a total of 1,314 UCE loci in the 3 taxa in which we are interested,
when we boil those down to a complete matrix, the complete matrix is only going to contain 306 UCE loci (of the
1,314). We had to drop 428 loci because we did not detect them in genus_species] and we had to drop another 380
loci because we did not detect them in genus_species?2.

The output written to the /path/to/uce/taxon-setl/datasetl.conf will look something like:

[Organisms]

genus_speciesl
genus_species?2
genus_species3

(continues on next page)

104 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

[Loci]
uce-1005
uce-1018
uce—-1025
uce-1028
uce—-1042
uce—-1055
uce-1060
uce—-107
uce-1073
uce-1074
uce-1076
uce—-108

Taxon set membership and locus number

Now, you might think that increasing the locus count is simply a matter of removing genus_speciesl from
the list of taxa. This is not strictly true, however, given the vagaries of hits and misses among taxa. phy-
luce_assembly_get_match_counts has several other options to help you determine which taxa may be causing prob-
lems, but picking the best combination of taxa to give you the highest number of loci is a reasonably hard optimization
problem.

Incomplete data matrix

You may not always want a complete data matrix. Or generating a complete matrix drops too many loci for your tastes
(it often does). In that case, you can easily generate an incomplete dataset using the following:

create the data matrix configuration file
phyluce_assembly_get_match_counts \
—-locus-db /path/to/uce/output/probe.matches.sqglite \
-—taxon-list-config datasets.conf \
——taxon—-group 'datasetl' \
——output /path/to/uce/taxon-setl/datasetl.conf \
——incomplete-matrix

Attention: Note the addition of the ——incomplete-matrix flag.

This will generate a dataset that includes any loci enriched across the taxa in the datasets.conf file.

Note: You do not determine the “completeness” of the final data matrix that you want to create during this stage -
that happens later, after alignment (see Finalize matrix completeness). As a result, we are alinging data from any and
all UCE loci having >= 3 taxa, which allows us to flexibly select the level of incompleteness later, without having to
re-run our alignments.

3.4. Phyluce in Daily Use 105

phyluce documentation, Release 1.7.0

Creating additional data matrix configuration files for other analyses

If you want to generate/evaluate many data matrix configuration files containing different taxa, you can simply create
new lists within the datasets.conf file like so:

[datasetl]
genus_speciesl
genus_species?2
genus_species3

[dataset?2]
genus_species?2
genus_species3
genus_species4
genus_speciesb
genus_speciesb

And then you can run phyluce_assembly_get_match_counts against this new section to output the data
matrix configuration files:

create the data matrix configuration file
phyluce_assembly_get_match_counts \
—-locus-db /path/to/uce/output/probe.matches.sqglite \
-—taxon-list-config datasets.conf \
—-taxon—-group 'dataset2' \
—-—output /path/to/uce/taxon-set2/dataset2.conf

In this way, you can get some idea of how different taxon-set memberships affect the resulting data matrix configuration
files prior to extracting the relevant FASTA data from $SASSEMBLY/contigs - which is a reasonably slow process.

Incorporating outgroup/other data

You may want to include outgroup data from another source into your datasets. This can be from the pre-processed
outgroup data files, but it doesn’t need to be these outgroup data. These additional data can also be contigs previously
assembled from a different set of taxa.

Hint: ADVANCED: If you want to include outgroup data from genome-enabled taxa, we have already created several
repositories containing these data. We maintaing these data under version control at: https://github.com/faircloth-lab/
uce-probe-sets. To download these data and use them in your analyses, you can clone the data using git:

git clone https://github.com/faircloth-lab/uce-probe-sets

Then update your ——taxon-1ist-config file and provide the proper paths to the cloned data, as detailed below.

The first step of this process is to setup your ——taxon-1ist-config slightly differently - by indicating taxa from
external data sources using asterisks:

[dataset3]
genus_speciesl
genus_species?2
genus_species3
genus_speciesdx
genus_species5x

106 Chapter 3. Guide

https://github.com/faircloth-lab/uce-probe-sets
https://github.com/faircloth-lab/uce-probe-sets

phyluce documentation, Release 1.7.0

Here, genus_species4 and genus_species5+ come from an external data source.

Then, you need to pass phyluce_assembly_get_match_counts the location of both your ——1ocus—db and
the ——extend-1locus-db. For example:

create the data matrix configuration file
phyluce_assembly_get_match_counts \
—-locus-db /path/to/uce/output/probe.matches.sqglite \
-—taxon-list-config datasets.conf \
-—taxon-group 'dataset3' \
——extend-locus-db /path/to/some/other/probe.matches.sqglite \
-—-output /path/to/uce/taxon-set3/dataset3.conf

To keep all this extension from getting too crazy, I’ve limited the ability to include external data to a single set. If you
have lots of data from many different enrichments, you’ll need to generate a contigs folder containing all these various
assemblies (or symlinks to them), then align the probes to these data (see March contigs to probes). Once you do that,
you can extend your current data set with all of these other data.

Extracting FASTA data using the data matrix configuration file

Once we have created the data matrix configuration file containing data for our taxa of interest and those loci of interest,
we need to extract the appropriate FASTA sequences from each assembly representing the taxon/OTU of interest (e.g.
in SASSEMBLY/contigs). This is a reasonably straightforward process that differs only slightly based on whether
you are extracting a complete matrix of data, an incomplete matrix of data, and/or whether you are incorporating any
external data sources.

Complete data matrix

To generate FASTA file containing the sequence data from a complete data matrix configuration file, run:

phyluce_assembly_get_fastas_from_match_counts \
—--contigs /path/to/assembly/contigs/ \
—-locus-db /path/to/uce/output/probe.matches.sglite \
-—-match-count-output /path/to/uce/taxon-setl/datasetl.conf \
—-—-output /path/to/uce/taxon-setl/datasetl.fasta

Incomplete data matrix

Similarly, to generate a FASTA file containing the sequence data from a complete data matrix configuration file, run:

phyluce_assembly_get_fastas_from_match_counts \
—--contigs /path/to/assembly/contigs/ \
—-locus-db /path/to/uce/output/probe.matches.sqglite \
--match-count-output /path/to/uce/taxon-set/datasetl.conf \
——incomplete-matrix /path/to/uce/taxon-setl/datasetl.incomplete \
—-—output /path/to/uce/taxon-setl/datasetl.fasta

Attention: Note the addition of the ——incomplete-matrix option. This creates an output file that con-
tains the names of the missing loci by taxon/OTU. You can name this file anything you like. I tend to use .
incomplete as the extension so that it is clear what this file contains.

3.4. Phyluce in Daily Use 107

phyluce documentation, Release 1.7.0

Incorporating outgroup/other data

When we’re incorporating external data, we need to pass the name of the external database as well as the name of the
external cont igs. To generate a FASTA file containing the sequence data from a complete data matrix configuration
that includes exeternal data sources, run:

phyluce_assembly_get_fastas_from_match_counts \
--contigs /path/to/assembly/contigs/ \
—-—locus-db /path/to/uce/output/probe.matches.sqglite \
—-match-count-output /path/to/uce/taxon-setl/datasetl.conf \
-—incomplete-matrix /path/to/uce/taxon-setl/datasetl.incomplete \
——extend-locus-db /path/to/some/other/probe.matches.sqglite \
——extend-locus-contigs /path/to/some/other/contigs \
-—output /path/to/uce/taxon-set3/dataset3.fasta

Aligning and trimming FASTA data

With all of that out of the way, things get much easier to deal with. Now, we need to align our data across loci, and
once we're done with that, the remaining operations we can run on the data are format-conversions, QC steps, matrix
trimming for completeness, and any number of other fun things.

Aligning the amount of data generated by enrichment approaches is reasonably computationally intensive - so the
alignment step goes fastest if you have a multicore machine. You also have several alignment options available,
although I would suggest sticking with MAFFT.

Attention: The alignment process, as implemented by phyluce, includes trimming steps that trim ragged edges
and remove alignments that become to short following trimming.

To turn trimming off and trim alignments using another approach, pass the —--no—-trim option.
There are also several more options related to trimming that you can tweak. To view these, run
phyluce_align_seqcap_align —--help.

Also see the Tutorial I: UCE Phylogenomics for more info on trimming options.

Complete data matrix
Alignment

To align the loci, by taxon, in the FASTA file you just created, run:

phyluce_align_seqgcap_align \
—--fasta /path/to/uce/taxon-setl/datasetl.fasta \
——output /path/to/uce/taxon-setl/mafft-nexus/ \
——taxa 3 \
——aligner mafft \
—-—cores 8

Attention: If you pass more ——cores than your machine has, you will receive an error.

108 Chapter 3. Guide

https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

Note: Here, we are accepting the default, output alignment format (“nexus”). To change that format to something
else, pass the ——output—format option with a choice of {fasta,nexus,phylip,clustal,emboss,stockholm}.

Alignment stats

Once you have alignments, it’s nice to get a general sense of their length and composition. You can quickly (with a
multicore machine) summarize thousands of alignments by running:

phyluce_align_get_align_summary_data \
——alignments /path/to/uce/taxon-setl/mafft-nexus/ \
-—cores 12

This will produce output that looks similar to:

2014-04-24 17:31:15,724 - get_align_summary_data - INFQO - ================ Starting,
—get_align_summary_data ================

2014-04-24 17:31:15,724 - get_align_summary_data - INFO - Version: git 7aec8fl
2014-04-24 17:31:15,724 — get_align_summary_data - INFO - Argument —--alignments: /
—path/to/uce/taxon-setl/mafft-nexus/

2014-04-24 17:31:15,724 - get_align_summary_data - INFO - Argument —--cores: 12
2014-04-24 17:31:15,724 - get_align_summary_data - INFO - Argument —-input_format:
—nexus

2014-04-24 17:31:15,724 - get_align_summary_data - INFO - Argument --log_path: /path/
—to/uce/taxon-setl/log

2014-04-24 17:31:15,725 - get_align_summary_data - INFO - Argument —--show_taxon_
—counts: False

2014-04-24 17:31:15,725 — get_align_summary_data - INFO - Argument —--verbosity: INFO
2014-04-24 17:31:15,725 - get_align_summary_data - INFO - Getting alignment files
2014-04-24 17:31:15,729 - get_align_summary_data - INFO - Computing summary,,
—statistics using 12 cores

2014-04-24 17:31:16,653 — get_align_summary_data - INFO - ———————————————————————
—Alignment summary ———————————————————————

2014-04-24 17:31:16,654 — get_align_summary_data - INFO - [Alignments] loci: 306
2014-04-24 17:31:16,654 - get_align_summary_data - INFO - [Alignments] length: 223,
—929

2014-04-24 17:31:16,654 — get_align_summary_data — INFO - [Alignments] mean: 731.79
2014-04-24 17:31:16,654 - get_align_summary_data - INFO - [Alignments] 95% CI: 17.01
2014-04-24 17:31:16,654 - get_align_summary_data - INFO - [Alignments] min: 275
2014-04-24 17:31:16,654 — get_align_summary_data - INFO - [Alignments] max: 1,109

2014-04-24 17:31:16,655 - get_align_summary_data - INFO - —————————— -
—Taxon summary —————————————————————————

2014-04-24 17:31:16,655 — get_align_summary_data - INFO - [Taxa] mean: 27.00
2014-04-24 17:31:16,655 - get_align_summary_data - INFO - [Taxa] 95% CI: 0.00
2014-04-24 17:31:16,656 - get_align_summary_data - INFO - [Taxa] min: 27
2014-04-24 17:31:16,656 — get_align_summary_data - INFO - [Taxa] max: 27
2014-04-24 17:31:16,656 - get_align_summary_data - INFO - —————————————--—— Missing,,
—~data from trim summary -————---—-——————

2014-04-24 17:31:16,656 — get_align_summary_data - INFO - [Missing] mean: 7.61
2014-04-24 17:31:16,656 — get_align_summary_data - INFO - [Missing] 95% CI: 0.24
2014-04-24 17:31:16,656 - get_align_summary_data - INFO - [Missing] min: 1.13
2014-04-24 17:31:16,657 — get_align_summary_data - INFO - [Missing] max: 15.79
2014-04-24 17:31:16,661 - get_align_summary_data - INFO - -~~~ .
—Character count summary ————————————————————

2014-04-24 17:31:16,661 - get_align_summary_data - INFO - [All characters] 6,046,

083

(continues on next page)

3.4. Phyluce in Daily Use 109

phyluce documentation, Release 1.7.0

(continued from previous page)

2014-04-24 17:31:16,661 - get_align_summary_data

—129

2014-04-24 17:31:16,661 - get_align_summary_data

—matrix completeness summary

2014-04-24 17:31:16,661 - get_align_summary_data

—alignments

2014-04-24 17:31:16,661
—alignments
2014-04-24 17:31:
—alignments
2014-04-24 17:31:
—alignments
2014-04-24 17:31:
—alignments
2014-04-24 17:31:
—alignments
2014-04-24 17:31:
—alignments
2014-04-24 17:31:
—alignments
2014-04-24 17:31:
—alignments
2014-04-24 17:31:
—alignments
2014-04-24 17:31:16,663
—Character counts
2014-04-24 17:31:16,663
651,009 times
2014-04-24 17:31:16,663
470,945 times
2014-04-24 17:31:16,663
—1,386,821 times
2014-04-24 17:31:16,663
1,089,729 times
2014-04-24 17:31:16,663
1,094,159 times
2014-04-24 17:31:16,663
1,353,420 times
2014-04-24 17:31:16,6064

16,662

16,662

16,662

16,662

16,662

16,662

16,662

16,662

—get_align_summary_data

get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data

get_align_summary_data

get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data
get_align_summary_data

get_align_summary_data

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

[Nucleotides]

[Matrix 50%]

[Matrix 55%]

[Matrix 60%]

[Matrix 65%]

[Matrix 70%]

[Matrix 75%]

[Matrix 80%]

[Matrix 85%]

[Matrix 90%]

[Matrix 95%]

[Characters]

[Characters]

[Characters]

[Characters]

[Characters]

[Characters]

4,924,

'-'" is present
'?'" is present
'A'" is present,
'C' is present
'G' is present

'T'" is present

=== Completed

Locus name removal

For historical reasons, and also for users to ensure that the sequence data aligned together are from the same loci, each
sequence line in the alignment file output by seqcap_align contains the genus_speciesl designator, but the
genus_speciesl designator is also prepended with the locus name (e.g. uce-1005_genus_speciesl). We
need to remove these if we plan to concatenate the loci (RAxML). More generally, it is a good idea to remove locus
names from sequence lines before running any analyses. To do this, run:

phyluce_align_remove_locus_name_from_files \

-—alignments /path/to/uce/taxon-setl/mafft-nexus/ \
—-—output /path/to/uce/taxon-setl/mafft-nexus—-clean/ \

-—taxa 3

110

Chapter 3. Guide

phyluce documentation, Release 1.7.0

Incomplete data matrix
Alignment

The only difference for an alignment of incomplete data is that we also pass the ——incomplete-matrix flag,
which tells the code to expect that some loci will not contain data across all taxa:

phyluce_align_seqgcap_align \
—-fasta /path/to/uce/taxon-set2/dataset2.fasta \
-—output /path/to/uce/taxon-set2/mafft-nexus/ \
—--taxa 34 \
——aligner mafft \
——cores 12 \
——incomplete-matrix

Alignment stats

Once you have alignments, it’s nice to get a general sense of their length and composition. You can quickly (with a
multicore machine) summarize thousands of alignments by running:

phyluce_align_get_align_summary_data \
-—alignments /path/to/uce/taxon-setl/mafft-nexus/ \
——cores 12

This will produce output that looks similar to:

2014-04-24 20:11:18,208 - get_align_summary_data - INFQO - ================ Starting,
—get_align_summary_data ================

2014-04-24 20:11:18,209 - get_align_summary_data - INFO - Version: git 7aec8fl
2014-04-24 20:11:18,209 — get_align_summary_data - INFO - Argument —--alignments: /
—path/to/uce/taxon-setl/mafft-nexus/

2014-04-24 20:11:18,209 - get_align_summary_data - INFO - Argument —--cores: 12
2014-04-24 20:11:18,209 - get_align_summary_data - INFO - Argument ——-input_format:
—nexus

2014-04-24 20:11:18,209 - get_align_summary_data - INFO - Argument --log_path: /path/
—to/uce/taxon-setl/log

2014-04-24 20:11:18,209 - get_align_summary_data - INFO - Argument —--show_taxon_
—counts: False

2014-04-24 20:11:18,209 - get_align_summary_data - INFO - Argument --verbosity: INFO
2014-04-24 20:11:18,210 - get_align_summary_data - INFO - Getting alignment files
2014-04-24 20:11:18,253 - get_align_summary_data - INFO - Computing summary,,
—statistics using 12 cores

2014-04-24 20:11:20,573 - get_align_summary_data - INFO - -~
—Alignment summary ———————————————————————

2014-04-24 20:11:20,574 - get_align_summary_data - INFO - [Alignments] loci: 1,104
2014-04-24 20:11:20,574 - get_align_summary_data - INFO - [Alignments] length: 752,
—~617

2014-04-24 20:11:20,574 - get_align_summary_data - INFO - [Alignments] mean: 681.72
2014-04-24 20:11:20,574 - get_align_summary_data - INFO - [Alignments] 95% CI: 13.03
2014-04-24 20:11:20,574 - get_align_summary_data - INFO - [Alignments] min: 169

2014-04-24 20:11:20,574 - get_align_summary_data - INFO - [Alignments] max: 4,520

2014-04-24 20:11:20,576 - get_align_summary_data - INFO - ————————————--——o—
—Taxon summary —————————————————————————

2014-04-24 20:11:20,576 - get_align_summary_data - INFO - [Taxa] mean: 24.29
2014-04-24 20:11:20,576 - get_align_summary_data - INFO - [Taxa] 95% CI: 0.26

(continues on next page)

3.4. Phyluce in Daily Use 111

phyluce documentation, Release 1.7.0

(continued from previous page)

2014-04-24 20:11:20,576 — get_align_summary_data - INFO - [Taxa] min: 3
2014-04-24 20:11:20,576 - get_align_summary_data - INFO - [Taxa] max: 27
2014-04-24 20:11:20,577 - get_align_summary_data - INFO - ————————————————— Missing,,
—~data from trim summary -————————————————

2014-04-24 20:11:20,577 - get_align_summary_data - INFO - [Missing] mean: 7.97
2014-04-24 20:11:20,577 - get_align_summary_data - INFO - [Missing] 95% CI: 0.16
2014-04-24 20:11:20,578 - get_align_summary_data - INFO - [Missing] min: 0.44
2014-04-24 20:11:20,578 - get_align_summary_data - INFO - [Missing] max: 19.71

2014-04-24 20:11:20,592 - get_align_summary_data - INFO - ————————————————————
—Character count summary ————————————————————

2014-04-24 20:11:20,592 - get_align_summary_data - INFO - [All characters] 18,
541,550

2014-04-24 20:11:20,592 - get_align_summary_data - INFO - [Nucleotides] 14,
—713,956

2014-04-24 20:11:20,594 - get_align_summary_data - INFO - ———————————————— Data,,
—matrix completeness summary ———————————————

2014-04-24 20:11:20,594 - get_align_summary_data - INFO - [Matrix 50%] 1048,
—alignments

2014-04-24 20:11:20,594 - get_align_summary_data - INFO - [Matrix 55%] 1044,
—alignments

2014-04-24 20:11:20,594 - get_align_summary_data - INFO - [Matrix 60%] 1035,
—alignments

2014-04-24 20:11:20,594 - get_align_summary_data - INFO - [Matrix 65%] 1027,
—alignments

2014-04-24 20:11:20,594 - get_align_summary_data - INFO - [Matrix 70%] 1024,
—alignments

2014-04-24 20:11:20,594 - get_align_summary_data - INFO - [Matrix 75%] 1010,
—alignments

2014-04-24 20:11:20,594 - get_align_summary_data - INFO - [Matrix 80%] 998,
—alignments

2014-04-24 20:11:20,595 - get_align_summary_data - INFO - [Matrix 85%] 994,
—alignments

2014-04-24 20:11:20,595 - get_align_summary_data - INFO - [Matrix 90%] 906,
—alignments

2014-04-24 20:11:20,595 - get_align_summary_data - INFO - [Matrix 95%] 794,
—alignments

2014-04-24 20:11:20,595 - get_align_summary_data - INFO - ————————————————————————
—Character counts —————————————————————

2014-04-24 20:11:20,595 - get_align_summary_data - INFO - [Characters] '-' is present,_
2,301,454 times

2014-04-24 20:11:20,595 - get_align_summary_data - INFO - [Characters] '?' is present
1,526,140 times

2014-04-24 20:11:20,595 - get_align_summary_data - INFO - [Characters] 'A' is present
4,092,085 times

2014-04-24 20:11:20,596 — get_align_summary_data - INFO - [Characters] 'C' is present,
3,267,550 times

2014-04-24 20:11:20,596 — get_align_summary_data - INFO - [Characters] 'G' is present,
3,286,742 times

2014-04-24 20:11:20,596 - get_align_summary_data - INFO - [Characters] 'T' is present
—~4,067,579 times

2014-04-24 20:11:20,596 — get_align_summary_data - INFO - ================ Completed
—get_align_summary_data ===============

Note: The alignment summary stats give you some idea of data matrix composition at varying levels of completeness
inthe Data matrix completeness summary section.

112 Chapter 3. Guide

phyluce documentation, Release 1.7.0

Locus name removal

For historical reasons, and also for users to ensure that the sequence data aligned together are from the same loci, each
sequence line in the alignment file output by seqcap_align contains the genus_speciesl designator, but the
genus_speciesl designator is also prepended with the locus name (e.g. uce-1005_genus_speciesl). We
need to remove these if we plan to concatenate the loci (RAxML). More generally, it is a good idea to remove locus
names from sequence lines before running any analyses. To do this, run:

phyluce_align_remove_locus_name_from_files \
——alignments /path/to/uce/taxon-setl/mafft-nexus/ \
——output /path/to/uce/taxon-setl/mafft-nexus-clean/ \
—-—cores 12

Finalize matrix completeness

After checking the resulting alignment summary stats and checking your alignments for quality, you will generally
want to cull the data set to reach your desired level of completeness. That is easily done by running the following,
while inputting the set of alignments just generated using:

the integer following —--taxa 1s the number of TOTAL taxa
phyluce_align_get_only_loci_with_min_taxa \
——alignments /path/to/uce/taxon-setl/mafft-nexus—-clean/ \
——taxa 34 \
-—percent 0.75 \
—-output /path/to/uce/taxon-setl/mafft-nexus-min-25-taxa/ \
——cores 12

Attention: This program computes the f1loor (taxa % percent) and uses the resulting number to deter-
mine the min (taxa) allowed in an alignment of ——percent completeness.

This will produce output that looks similar to:

2014-04-24 20:12:33,386 — get_only_loci_with_min_taxa - INFO - ==============
—Starting get_only_loci_with_min_taxa =============

2014-04-24 20:12:33,387 - get_only_loci_with _min_taxa - INFO - Version: git 7aec8fl
2014-04-24 20:12:33,387 - get_only_loci_with_min_taxa - INFO - Argument --alignments:
—/path/to/uce/taxon-setl/mafft-nexus

2014-04-24 20:12:33,387 - get_only_loci_with _min_taxa - INFO - Argument --cores: 12
2014-04-24 20:12:33,387 - get_only_loci_with_min_taxa - INFO - Argument --input_
—format: nexus

2014-04-24 20:12:33,387 - get_only_loci_with_min_taxa - INFO - Argument --log_path:
—None

2014-04-24 20:12:33,387 — get_only_loci_with_min_taxa - INFO - Argument —-output: /
—path/to/uce/taxon-setl/mafft-nexus-min-25-taxa

2014-04-24 20:12:33,388 — get_only_loci_with_min_taxa - INFO - Argument --percent: 0.
75

2014-04-24 20:12:33,388 — get_only_loci_with min_taxa - INFO - Argument --taxa: 27
2014-04-24 20:12:33,388 — get_only_loci_with_min_taxa - INFO - Argument --verbosity:
— INFO

2014-04-24 20:12:33,388 - get_only_loci_with min_taxa - INFO - Getting alignment files
2014-04-24 20:12:35,293 - get_only_loci_with_min_taxa - INFO - Copied 1010 alignments,
—of 1104 total containing >= 0.75 proportion of taxa (n = 20)

2014-04-24 20:12:35,294 - get_only_loci_with_min_taxa — INFO - =============

—Compieted get_oniy 1OCI_WICI mMilN_taxd ————————————= (continues on next page)

3.4. Phyluce in Daily Use 113

phyluce documentation, Release 1.7.0

(continued from previous page)

|

Add missing data designators

Sometimes, depending on how you will handle the alignments, you will need to add missing data designators for taxa
missing from each alignment of a given locus. This will basically allow you to generate concatenated data sets and it
may reduce error messages from other programs about files having unequal numbers of taxa. To do this, run:

phyluce_align_add_missing_data_designators \
—-—alignments /path/to/uce/taxon-setl/mafft-nexus-min-25-taxa \
——output /path/to/uce/taxon-setl/mafft-nexus-min-25-taxa \
—-match-count-output /path/to/uce/taxon-set/datasetl.conf \
—-—incomplete-matrix /path/to/uce/taxon-setl/datasetl.incomplete \
—--log-path log \
——cores 12

Note: Here, we’re inputting the ——match—-count-output and the ——incomplete-matrix we created earlier
in the Incomplete data matrix and Extracting FASTA data using the data matrix configuration file sections.

Operations on alignments
Many workflows for phylogenetics simply involve converting one alignment format to another or changing something

about the contents of a given alignment. We use many of these manipulations in the next section (see Preparing
concatenated alignment data for analysis), as well.

Converting one alignment format to another

To convert one alignment type (e.g., nexus) to another (e.g., fasta), we have a relative simple bit of code to achieve
that process. You can greatly speed this processing step up on a multicore machine with the ——cores option:

phyluce_align_convert_one_align_to_another \
-—alignments /path/to/uce/taxon-setl/mafft-nexus \
—-—output /path/to/uce/taxon-setl/mafft-fasta \
——input-format nexus \
——output-format fasta \
——cores 8 \
—-—log-path log

You can convert from/to:
1. fasta
nexus
phylip
phylip-relaxed (probably the one you want)
clustal

emboss

NS A » N

stockholm

114 Chapter 3. Guide

phyluce documentation, Release 1.7.0

Shortening taxon names

You can shorten taxon names (e.g. for use with strict phylip) by modifying the above command slightly to add
——shorten—-names:

phyluce_align_convert_one_align_to_another \
-—alignments /path/to/uce/taxon-setl/mafft-nexus \
—-—output /path/to/uce/taxon-setl/mafft-fasta-shortnames \
——input-format nexus \
——output-format fasta \
——cores 8 \
—--shorten—-names \
—-—log-path log

Excluding loci or taxa

You may want to exclude loci less than a certain length or having fewer than a particular number of taxa, or only
containing certain taxa. You can accomplish that using:

phyluce_align_filter_alignments \
——alignments /path/to/uce/taxon-setl/mafft-nexus \
—-—output /path/to/a/new/directory \
——input-format nexus \
-—containing-data-for genus_speciesl genus_species2 \
—--min-length 100 \
——min-taxa 5 \
-—-log-path log

This will filter alignments that do not contain the taxa requested, those alignments shorter than 100 bp, and those
alignments having fewer than 5 taxa (taxa with only missing data are not counted).

Extracting taxon data from alignments

Sometimes you may have alignments from which you want to extract data from a given taxon, format the alignment
string as fasta, and do something with the fasta results:

phyluce_align_extract_taxon_fasta_from_alignments \
-—alignments /path/to/uce/taxon-setl/mafft-nexus \
—-—taxon genus_speciesl \
-—output /path/to/output/file.fasta

Preparing concatenated alignment data for analysis

Formatting data for analysis generally involves slight differences from the steps described above. There are several
application-specific programs in phyluce.

RAxML

For RAXML, you need a concatenated phylip file. This is pretty easily created if you have an input directory of nexus
alignments. To create a concatenated phylip file from many input alignments, run:

3.4. Phyluce in Daily Use 115

https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

phyluce_align_concanatenate_alignments \
——alignments /path/to/uce/taxon-setl/mafft-nexus \
—-—output /path/to/uce/taxon-setl/mafft-raxml \
——phylip

This will output a concatenated file named mafft-raxml.phylip in /path/to/uce/taxon-setl/
mafft-raxml. It will also include a charset file, nafft-raxml .charsets.

MrBayes (Nexus format)

You can create a Nexus-formatted file for programs like MrBayes and Paup with:

phyluce_align_concanatenate_alignments \
-—alignments /path/to/uce/taxon-setl/mafft-nexus \
——output /path/to/uce/taxon-setl/mafft-raxml \
-—nexus

The charsets will be included in the Nexus file.

3.4.4 Workflows

As of phyluce 1.7.0, there is new functionality that uses “workflows” to perform different actions. Key among these
are things like computing coverage across UCE loci and phasing SNPs within UCE loci. These workflows use Snake-
make_, internally, and they are pretty easily portable and/or easy to modify, if desired.

What'’s Different
Previously, phyluce used its own, internal pipeline code to run multi-step, bioinformatic workflows. These have now

been moved into “workflows”, which accomplish the same general steps but are much easier to maintain and run using
Snakemake_.

Workflow Location

The workflow Snakemake_ files should be packaged into your conda installation, in case you are interested in modi-
fying them for any reason. To most easily find their location, activate the phyluce environment, then run:

get location of python in our conda environment
which python

this returns something like:
/Users/bcf/miniconda3/envs/phyluce/bin/python

This means that the workflow Snakemake_ files will be located at /Users/bcf/miniconda3/envs/
phyluce/phyluce/workflows. Individual workflows can be run directly by Snakemake_ from this directory,
or they can be copied elsewhere, modified, and run by Snakemake_. You can also run these workflows within phyluce
(see below).

116 Chapter 3. Guide

https://www.google.com/search?client=safari&rls=en&q=paup&ie=UTF-8&oe=UTF-8
https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
http://docs.continuum.io/conda/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

Workflow Configuration

The workflow configuration files are detailed below, but it’s important to note that they use a different configura-
tion format than other phyluce configuration files. Instead of Windows INI based format, the new workflows (and
Snakemake_, in general) use YAML syntax. See examples below.

Different Workflows
Mapping

Right now, the “mapping” workflow precedes all other workflows and is responsible for mapping reads to contigs,
marking duplicates, computing coverage, and outputting BAM files representing the mapped reads. In order to run
this new workflow, create a YAML-formatted configuration file that contains the names and paths (relative or absolute)
to your contigs and your trimmed reads:

reads:

alligator-mississippiensis: ../../phyluce/tests/test-expected/raw-reads/alligator—
—mississippiensis/

gallus—-gallus: ../../phyluce/tests/test-expected/raw-reads/gallus—-gallus

peromyscus-maniculatus: ../../phyluce/tests/test-expected/raw-reads/peromyscus-—
—maniculatus

rana-sphenocephafa: ../../phyluce/tests/test-expected/raw-reads/rana-sphenocephafa
contigs:

alligator-mississippiensis: ../../phyluce/tests/test-expected/spades/contigs/
—alligator_mississippiensis.contigs.fasta

gallus—gallus: ../../phyluce/tests/test-expected/spades/contigs/gallus_gallus.
—contigs.fasta

peromyscus-maniculatus: ../../phyluce/tests/test-expected/spades/contigs/
—peromyscus_maniculatus.contigs.fasta

rana-sphenocephafa: ../../phyluce/tests/test-expected/spades/contigs/rana_

—sphenocephafa.contigs.fasta

The first section of the file gives the name and path to a folder of raw-reads for each sample (this folder is what results
from illumiprocessor). The second section gives the name and path to the contigs assembled for each organism.

To map these reads to the assembled contigs, run:

phyluce_workflow —-config <path to your config file> \
——output <path to some output folder name> \
—-workflow mapping \
——cores 1

This will run the workflow, and your results will end up in the output folder specified. The structure of the output
folder will look something like the following:

+— coverage

+— all-taxon.summary.csv

+— alligator-mississippiensis.samtools.cov.tdt
+— alligator-mississippiensis.summary.csv

+— gallus—gallus.samtools.cov.tdt

+— gallus—-gallus.summary.csv

+— peromyscus-maniculatus.samtools.cov.tdt

+— peromyscus-maniculatus.summary.csv

+— rana-sphenocephafa.samtools.cov.tdt

(continues on next page)

3.4. Phyluce in Daily Use 117

https://github.com/faircloth-lab/phyluce
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/YAML
https://github.com/faircloth-lab/illumiprocessor/

phyluce documentation, Release 1.7.0

(continued from previous page)

+— rana-sphenocephafa.summary.csv
+— mapped_reads
+— alligator-mississippiensis.fxm.sorted.md.bam
+— alligator-mississippiensis.fxm.sorted.md.bam.flagstats.txt
+— gallus—gallus.fxm.sorted.md.bam

+— gallus—-gallus.fxm.sorted.md.bam.flagstats.txt
+— peromyscus-maniculatus.fxm.sorted.md.bam
+— peromyscus-maniculatus.fxm.sorted.md.bam.flagstats.txt

+— rana-sphenocephafa.fxm.sorted.md.bam

+— rana-sphenocephafa.fxm.sorted.md.bam.flagstats.txt
+— references

+— alligator-mississippiensis.contigs.fasta

+— alligator-mississippiensis.contigs.fasta.amb

+— alligator-mississippiensis.contigs.fasta.ann

+— alligator-mississippiensis.contigs.fasta.bwt

+— alligator-mississippiensis.contigs.fasta.pac

+— alligator-mississippiensis.contigs.fasta.sa

+— gallus—-gallus.contigs.fasta

+— gallus-gallus.contigs.fasta.amb

+— gallus—-gallus.contigs.fasta.ann

+— gallus—-gallus.contigs.fasta.bwt

+— gallus-gallus.contigs.fasta.pac

+— gallus—-gallus.contigs.fasta.sa

+— peromyscus-maniculatus.contigs.fasta

+— peromyscus-maniculatus.contigs.fasta.amb
+— peromyscus-maniculatus.contigs.fasta.ann
+— peromyscus-maniculatus.contigs.fasta.bwt
+— peromyscus-maniculatus.contigs.fasta.pac
+— peromyscus-maniculatus.contigs.fasta.sa

+— rana-sphenocephafa.contigs.fasta
+— rana-sphenocephafa.contigs.fasta.amb
+— rana-sphenocephafa.contigs.fasta.ann
+— rana-sphenocephafa.contigs.fasta.bwt
+— rana-sphenocephafa.contigs.fasta.pac
+— rana-sphenocephafa.contigs.fasta.sa
Within the coverage directory are outputs on a per-sample and overall basis. For example,

alligator-mississippiensis.summary.csv will contain summary info on coverage for the
alligator-mississippiensis contigs - one line for each contig. Overall summary statistics (by taxon)
will be in all-taxon.summary.csv. BAM files resulting from the mapping are in the mapped-reads
directory, along with the output of samtools flagstats for each BAM. The references directory contains the
FASTA-formatted contigs you started with and their bwa indexes.

Attention: If you want to compute coverage on UCE contigs (only) versus all contigs that were assembled, run
the probe/bait to contig matching, create a monolithic FASTA for whatever samples you want, explode that FASTA
——by-taxon, then use the path to those files for each taxon in the cont ig section of the workflow config file,
described above.

You can also perform a dry-run of the software by adding the ——dry—-run parameter, like so:

phyluce_workflow —-—-config <path to your config file> \
——output <path to some output folder name> \
—-workflow mapping \
-—cores 1 \
——dry-run

118 Chapter 3. Guide

http://www.htslib.org/
http://bio-bwa.sourceforge.net/

phyluce documentation, Release 1.7.0

This will show you what should happen, without performing the analysis. Log files from the Snakemake_ run will be
present in a hidden directory in your output folder named . snakemake. Like so:

+— .snakemake
+— auxiliary
+— conda
+— conda-archive
+— incomplete
+— locks
+— log

+— 2021-03-01T150829.811458.snakemake.log
+— metadata

+— scripts

+— shadow

+— singularity
+— coverage
+— mapped_reads
+— references
Phasing

The phasing workflow is a re-implementation of the approach that we used in Andermann et al. 2018 that uses
mapping information (generated above), along with samtools and pilon_ to output the phased contigs. The goal of
reimplmentation was to make this pipeline more robust. You run the pipeline by (1) running the mapping workflow,
above. Then, (2) you create a second configuration file that looks like the following:

bams:

alligator-mississippiensis: ../tests/test-data/bams/alligator-mississippiensis.
—fxm.sorted.md.bam

gallus—-gallus: ../tests/test-data/bams/gallus—gallus.fxm.sorted.md.bam

peromyscus-maniculatus: ../tests/test-data/bams/peromyscus—-maniculatus.fxm.sorted.
—md.bam

rana-sphenocephafa: ../tests/test-data/bams/rana-sphenocephafa.fxm.sorted.md.bam
contigs:

alligator-mississippiensis: ../tests/test-data/contigs/alligator_mississippiensis.
—contigs.fasta

gallus—gallus: ../tests/test-data/contigs/gallus_gallus.contigs.fasta

peromyscus-maniculatus: ../tests/test-data/contigs/peromyscus_maniculatus.contigs.
—~fasta

rana-sphenocephafa: ../tests/test-data/contigs/rana_sphenocephafa.contigs.fasta

This contains a section pointing to the location of the BAM files created during mapping, and you can copy over the
contigs section of the mapping config file. Finally, (3) you run the workflow with:

phyluce_workflow —--config <path to your config file> \
-—output <path to some output folder name> \
—-—workflow mapping \
——cores 1

This produces a folder of output containing BAMs and FASTAs for each haplotye that looks like the following (here,
only showing the results for gallus-gallus versus all 4 taxa in the configuration file:

+— bams

(continues on next page)

3.4. Phyluce in Daily Use 119

http://www.htslib.org/

phyluce documentation, Release 1.7.0

(continued from previous page)

+— gallus-gallus.0.bam

+— gallus-gallus.0.bam.bai

+— gallus—-gallus.l.bam

+— gallus-gallus.l.bam.bai

+— gallus—-gallus.chimera.bam
+— fastas

+— gallus-gallus.0O.changes
+— gallus-gallus.0.fasta
+— gallus—-gallus.0.vcf
+— gallus—-gallus.1l.changes
+— gallus-gallus.l.fasta
+— gallus—-gallus.l.vcf
Right now, what you do with these files is left up to you (e.g. in terms of merging their con-

tents and getting the data aligned). You can essentially group all the «.0.fasta and x.1.fasta
files for all taxa together as new “assemblies” of data and start the phyluce analysis process over from
phyluce_assembly match_contigs_to_probes.

Correction

This is a new workflow that we’ve put together that helps account for sequencing depth and base-calling quality in
assembled contigs. Essentially, you can think of this “correction” process as a filter that helps remove low-depth,
low-quality base calls from your assembly data generated by phyluce. We are using this, in particular, with UCE data
collected from toepads.

To run the workflow, (1) first run the mapping workflow above and (2) create a configuration file that looks like:

bams:

alligator-mississippiensis: ../tests/test-data/bams/alligator-mississippiensis.
—fxm.sorted.md.bam

gallus—gallus: ../tests/test-data/bams/gallus—gallus.fxm.sorted.md.bam

peromyscus-maniculatus: ../tests/test-data/bams/peromyscus-maniculatus.fxm.sorted.
—md.bam

rana-sphenocephafa: ../tests/test-data/bams/rana-sphenocephafa.fxm.sorted.md.bam
contigs:

alligator-mississippiensis: ../tests/test-data/contigs/alligator_mississippiensis.
—contigs.fasta

gallus—gallus: ../tests/test-data/contigs/gallus_gallus.contigs.fasta

peromyscus-maniculatus: ../tests/test-data/contigs/peromyscus_maniculatus.contigs.
—~fasta

rana-sphenocephafa: ../tests/test-data/contigs/rana_sphenocephafa.contigs.fasta

This contains a section pointing to the location of the BAM files created during mapping, and you can copy over the
contigs section of the mapping config file. Finally, (3) you run the workflow with:

phyluce_workflow —--config <path to your config file> \
——output <path to some output folder name> \
——workflow correction \
——cores 1

This produces a folder of output that looks like the following. Within this directory as a set of “consensus” contigs,
where variant bases have been hard-masked that have QUAL<20 | DP<5 | AN>2:

120 Chapter 3. Guide

https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

+— consensus
+— alligator-mississippiensis.consensus.filt.fasta
+— gallus—-gallus.consensus.filt.fasta
+— peromyscus-maniculatus.consensus.filt.fasta
+— rana-sphenocephafa.consensus.filt.fasta

+— filtered_norm_pileups
+— alligator-mississippiensis.norm.flt-indels.Q20.DP10
+— alligator-mississippiensis.norm.flt-indels.Q20.DP10
+— gallus-gallus.norm.flt-indels.Q20.DP10.bcf
+— gallus—-gallus.norm.flt-indels.Q20.DP10.bcf.csi

+— peromyscus-maniculatus.norm.flt-indels
+— peromyscus-maniculatus.norm.flt-indels
+— rana-sphenocephafa.norm.flt-indels.Q20
+— rana-sphenocephafa.norm.flt-indels.Q20

.020.DP10.bct
.Q20.DP10.bcf.
.DP10.bcf
.DP10.bcf.csi

.bct
.bcf.csi

csi

Once the “correction” process has been run, you can re-input the corrected contigs to the phyluce analysis process
from the phyluce_assembly_match_contigs_to_probes program.

3.4.5 List of Phyluce Programs
Assembly

phyluce_assembly_assemblo_abyss

Assemble fastq data for phyluce using abyss.

phyluce_assembly_assemblo_spades

Assemble fastq data for phyluce using spades.

phyluce_assembly_assemblo_velvet

Assemble fastq data for phyluce using velvet.

phyluce_assembly explode_get_fastas_file

Given an input “monolithic” fasta file of UCE contigs (from phyluce), break that file up into locus- or taxon-specific

individual files.

phyluce_assembly_extract_contigs_to_barcodes

Takes as input the LOG file created during phyluce_assembly_match_contigs_to_barcodes (below) and

outputs a more nicely-formatted table of results.

phyluce_assembly_get_bed_from_lastz

Given a lastz file produced by phyluce, convert those results to BED format.

3.4. Phyluce in Daily Use

121

https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
http://www.bcgsc.ca/platform/bioinfo/software/abyss
https://github.com/faircloth-lab/phyluce
https://cab.spbu.ru/software/spades/
https://github.com/faircloth-lab/phyluce
http://www.ebi.ac.uk/~zerbino/velvet/
https://github.com/faircloth-lab/phyluce
http://www.bx.psu.edu/~rsharris/lastz/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

phyluce_assembly_get_fasta_lengths

Given an input FASTA-formatted file, summarize the info on contigs within that file and output summary statistics.

phyluce_assembly_get_fastas_from_match_counts

Given a match-count file (produced from phyluce_assembly_get_match_counts), output a monolithic
FASTA-formatted file of UCE loci.

phyluce_assembly get_fastq_lengths

Given some input FASTQ data, output summary stastistics about those reads.

phyluce_assembly _get_match_counts

Given results from phyluce_assembly_match_contigs_to_probes (below) and a configuration file, out-
put those taxa and loci for which matches exist in the UCE database. The config file looks like:

[all]
alligator_mississippiensis
anolis_carolinensis
gallus_gallus
mus_musculus

phyluce_assembly_match_contigs_to_barcodes

Given a directory of assembled contigs and a file containing an organismal barcode in FASTA format, check the contigs
of all taxa in the directory for presence of the barcode sequence, extract that region of each contig for each taxon, and
run the result against the BOLD database (for each taxon). Useful for checking species ID and also searching for
potential contamination.

phyluce_assembly_match_contigs_to_probes

Given a directory of assembled contigs and a file of UCE baits/probes, search the contigs for those that match part/all
of a given bait/probe at some level of stringency.

phyluce_assembly screen_probes_for_dupes
Check a probe/bait file for potential duplicate baits/probes.
Alignment
phyluce_align_add_missing_data_designators

Sometimes alignments do not contain the same taxa as other alignments, and those “missing taxa” need to be added
in. This program allows you to add those missing entries for the missing taxa, although this is often not needed when
using the phyluce concatenation tools (see below), which automatically deal with this problem.

122 Chapter 3. Guide

https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

phyluce_align_concatenate_alignments

Given an input file of alignments, concatenate those alignments together and output either a ——nexus ora ——phylip
formatted file, along with charset information (either as an extra file, for phylip, or within the ——nexus formatted
file).

phyluce_align_convert_degen_bases

If there are IUPAC degenerate base codes within an alignment, convert those to “N”.

phyluce_align_convert_one_align_to_another

Convert alignments between formats. Can convert freely between FASTA, Nexus, Phylip, Phylip-relaxed, Clustal,
Emboss, and Stockholm.

phyluce_align_explode_alignments

Given an input directry of alignments, “explode” those files into taxon- or locus-specific sequence files.

phyluce_align_extract_taxa_from_alignments

Given a set of alignments and a list of taxa to keep or remove from the alignments, make a new directory of alignments
with those taxa kept or removed.

phyluce_align_extract_taxon_fasta_from_alignments

Given a set of alignments and a taxon to extract from them, extract the data for the taxon and format those data as a
FASTA file.

phyluce_align_filter_alignments

Filter alignments having certain taxa or certain lengths and make a new directory without those alignments.

phyluce_align_format_concatenated_phylip_for_paml

This will convert a Phylip-formatted concatenated alignment for PAML’s weird, internal format. Not sure if PAML
needs this format any longer.

phyluce_align_get_align_summary_data

Given a directory of alignments, output summary statistics for those alignments quickly.

phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed

Given a directory of alignments, use gblocks to trim alignment edges and output a new folder of trimmed alignments.

3.4. Phyluce in Daily Use 123

http://molevol.cmima.csic.es/castresana/Gblocks.html

phyluce documentation, Release 1.7.0

phyluce_align_get_incomplete_matrix_estimates

Given a directory of alignments, estimate the number of taxa present in various incomplete matrix scenarios.

phyluce_align_get_informative_sites

Given a directory of alignments, compute the number of informative sites. Can output a list of these, which can be
used for additional filtering by # of sites.

phyluce_align_get_only_loci_with_min_taxa

Given a directory of alignments, filter those alignments for a minimum number of taxa, and output the filtered align-
ments to a new directory.

phyluce_align_get_ry recoded_alignments

Given a directory of alignments, recode those as either “R/Y” or “0/1” and output the converted alignments to a new
directory.

phyluce_align_get_smilogram_from_alignments

Given a directory of alignments, ouput a CSV-formatted file showing the number of sites in the alignment from the
center to the edges. Can be input to R to make “smilogram” figures of UCE variation.

phyluce_align_get_taxon_locus_counts_in_alignments

Given a directory of alignments, get a count of taxa in each alignment. Can be used to filter alignments based on
occupancy.

phyluce_align_get_trimal_trimmed_alignments_from_untrimmed

Given a directory of alignments, use trimAL to trim the alignments and write the trimmed alignments to a new direc-
tory.

phyluce_align_get_trimmed_alignments_from_untrimmed

Given a directory of alignments, use the phyluce edge-trimming algorithm to trim alignment edges and output a new
folder of trimmed alignments.

phyluce_align_move_align_by_conf_file

Given an input configuration file, copy alignments present in the configuration file from one directory to a new direc-
tory. Useful for filtering alignments. The format of the config file looks like:

124 Chapter 3. Guide

http://trimal.cgenomics.org
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

[all]
locus—name-1.nexus
locus—name-2.nexus
locus—name—-3.nexus

And this will copy all three loci to the specified (new) directory.

phyluce_align_randomly_sample_and_concatenate

Given an input directory of alignments, randomly sample those alignments and output a file of those random sequences
concatenated together.

phyluce_align_reduce_alignments_with_raxml

Given an input directory of alignments, use raxml to create “reduced” files of each alignment (where missing and
low-info site patterns have been removed). Was needed to work around a pargenes bug but should not be necessary
any longer.

phyluce_align_remove_empty taxa

Given an input directory of alignments, remove those taxa within each alignment having no data.

phyluce_align_remove_locus_name_from_files

Given an input directory of alignments that still contain the names of each UCE loci along with each taxon, strip the
name of the UCE locus from each taxon and output the result into a new directory.

phyluce_align_screen_alignments_for_problems

Given an input directory of alignments, screen those for problems such as weird nucleotide codes (“X”) or runs of
ambigious bases (“N”).

phyluce_align_seqcap_align

Given a monolithic fasta file, align fasta sequences by locus and output the resulting alignments into a new directory.

phyluce_align_split_concat_nexus_to_loci

Given an input NEXUS-formatted file of a concatenated alignment (with charset info in the file), split the concatenated
alignment back into component parts.

Genetrees

phyluce_genetrees_generate_multilocus_bootstrap_count

This is used with site and locus-based boostrap resampling. Not particularly recommended any longer.

3.4. Phyluce in Daily Use 125

https://github.com/amkozlov/raxml-ng
https://github.com/BenoitMorel/ParGenes

phyluce documentation, Release 1.7.0

phyluce_genetrees_get_mean_bootrep_support

Given a set of input genetrees, compute the mean bootrep support among those trees.

phyluce_genetrees_get_tree_counts

Given an input directory of alignments, uses the symmetric difference to count the number of similar and difference
gene tree topologies.

phyluce_genetrees_rename_tree_leaves

Given an input tree and a config file detailing the mapping of old names to new names, convert the old leaf names in a
tree to the new names in the config file. The config file format is similar to:

[standard]
acanthisitta_chloris_APP_002:Passeriformes__ Acanthisittidae_ _acanthisitta_chloris_APP_
—002__4763__1051
acrocephalus_arundinaceus_OUT_0054:Passeriformes__Acrocephalidae__acrocephalus_
—arundinaceus_OUT_0054_ 4729 1062
aegithalos_caudatus_B10K_DU_002_10:Passeriformes__Aegithalidae__aegithalos_caudatus_
—B10K_DU_002_10__4572_ 1038
aegotheles_bennettii_B10K_DU_029_76:Caprimulgiformes__Aegothelidae__aegotheles_
—bennettii_B10K_DU_029_76__4806__1058
agapornis_roseicollis_OUT_0001l:Psittaciformes__Psittaculidae__agapornis_roseicollis_
—QUT_0001__4760__1040
agelaius_phoeniceus_OUT_0050:Passeriformes__Icteridae__agelaius_phoeniceus_OUT_0050___
—4786__1060

Where the old name is on the left of the colon and the new name is on the right of the colon.

phyluce_genetrees_sort_multilocus_bootstraps

This is used with site and locus-based boostrap resampling. Not particularly recommended any longer.
NCBI

phyluce_ncbi_chunk_fasta_for_ncbi

Splits an input fasta file into chunks of 10,000 sequences because Sequin files should not contain more than 10,000
records.

phyluce_ncbi_prep_uce_align_files_for_ncbi

Given an input file of alignments, prep those for input to tbl2asn, which formats them for submission to NCBI. Also
takes a config file with a format similar to what follows.

[exclude taxa]
ichthyopis kohtaoensis
plethodon chlorobryonis
phalacrocorax carbo

(continues on next page)

126 Chapter 3. Guide

phyluce documentation, Release 1.7.0

(continued from previous page)

[exclude loci]
uce-1809

[metadata]

molecule:DNA

moltype:genomic

location:genomic

note:ultra conserved element locus {}
specimen_voucher: {}

[vouchers]

Ardeotis kori:FLMNH 44254
Balaeniceps rex:LSUMZ B13372
Cathartes aura:LSUMZ B17242

[remap]
pterocles:pterocles exustus
zanclostomus javanicus:sphyrapicus varius

Probes

phyluce_probe_easy lastz

Run an “easy” lastz search of one file against another file.

phyluce_probe_get_genome_sequences_from_bed

Given an input BED file, extracts fasta information matching the coordinates in the BED file.

phyluce_probe_get_locus_bed_from_lastz_files

Given a lastz results file where baits/probes were searched against a genome, output a BED-formatted file of the locus
coodinates for each match of bait/baits to the genome.

phyluce_probe_get multi_fasta_table

Make a table containing multi-way fasta information.

phyluce_probe_get_multi_merge_table

Make a table containing multi-way fasta information.

phyluce _probe _get probe bed_from_lastz_files

Given a lastz results file where baits/probes were searched against a genome, output a BED-formatted file of the bait
coodinates for each match of bait/baits to the genome.

3.4. Phyluce in Daily Use 127

http://www.bx.psu.edu/~rsharris/lastz/
http://www.bx.psu.edu/~rsharris/lastz/
http://www.bx.psu.edu/~rsharris/lastz/

phyluce documentation, Release 1.7.0

phyluce_probe_get_screened_loci_by_ proximity

Given a FASTA file of properly formatted baits, keep only 1 locus (randomly) of those falling within a set distance
from one another.

phyluce_probe get subsets_of tiled probes

Given a bait file that contains baits designed from multiple organisms, prune that bait file to contain only those baits
from a desired subset of organisms.

phyluce_probe_get_tiled_probe_from_multiple_inputs

Design baits from multiple input genomes.

phyluce_probe_get_tiled_probes

Design baits from a single input genome.

phyluce_probe_query _multi_fasta_table

Query a multifasta table.

phyluce_probe_query_multi_merge_table

Query a multimerge table.

phyluce_probe_reconstruct_uce_from_probe

From a UCE bait set, reconstruct the UCE locus used for design.

phyluce_probe_remove_duplicate_hits_from_probes_using_lastz

Given a bait set, and some lastz results of matching that bait set to itself, screen those probes from the bait set that
match other probes (these are putative duplicates).

phyluce_probe_remove_overlapping_probes_given_config

Given a config file, filter baits from a set that are in the config file.

phyluce_probe_run_multiple_lastzs_sqlite

Use phyluce to run multiple lastz searches across multiple input genomes.

128 Chapter 3. Guide

http://www.bx.psu.edu/~rsharris/lastz/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

phyluce_probe_slice_sequence_from_genomes

Given results from phyluce_probe_run_multiple_lastzs_sqglite, slice fasta sequences from the
genomes where there were matches.

phyluce_probe_strip_masked_loci_from_set

Remove baits from a putative bait set design where bait sequences have a high degree of masking.

Utilities

phyluce_utilities_combine_reads

Combine groups of reads based on an input file in config format.

phyluce_utilities_filter_bed_by fasta

Filter a BED file of UCEs given a FASTA file of UCEs.

phyluce_utilities_get_bed_from_fasta

Given an input fasta file of baits, prepared a BED-formatted file of their locations.

phyluce_utilities_merge_multiple_gzip_files

Merge together multiple gzip files from the same sample.

phyluce_utilities_merge_next_seq_gzip_files

Merge together multiple fastq gzip files from the next seq (these sometimes come as 4 files per sample).

phyluce_utilities_replace_many_links

Use a config file to reformat many symlinks all at once.

phyluce_utilities_sample_reads_from_files

Automatically randomly sample a fraction of reads from a fastq file.

phyluce_utilities_unmix_fasta_reads

Given an interleaved fastq file, convert that file into R1, R2, and singleton reads.

3.4. Phyluce in Daily Use 129

phyluce documentation, Release 1.7.0

Workflow

phyluce_workflow

A single program to run a variety of Snakemake_ workflows.

130 Chapter 3. Guide

CHAPTER 4

Project info

4.1 Citing

If you use the phyluce code in any form, please cite the following manuscript:

If you are processing UCE data that you have collected by targeted enrichment using our probes/protocols, please cite
the following manuscripts, which describes the first use of the general approach:

Then, if you are working in groups other than tetrapods, please cite the appropriate manuscript for the organisms you
are working on.

4.1.1 References

Here are some additional references that have used UCE data for phylogenomic inference at both “deep” and “shallow”
timescales. Most of these manuscripts used an older version of the code:

4.1.2 Other UCE References

4.2 License

4.2.1 Documentation

The documentation for phyluce is available under a CC-BY (2.0) license. This license gives you permission to copy,
distribute, and trasmit the work as well as to adapt the work or use this work for commercial purposes, under the
condition that you must attribute the work to the author(s).

If you use this documentation or the phyluce software for your own research, please cite both the software and (Fair-
cloth et al. 2012). See the Citing section for more detail.

131

https://github.com/faircloth-lab/phyluce
https://github.com/faircloth-lab/phyluce
http://creativecommons.org/licenses/by/2.0/
https://github.com/faircloth-lab/phyluce

phyluce documentation, Release 1.7.0

4.2.2 Software

Copyright (c) 2010-2021, Brant C. Faircloth All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

 Neither the name of the University of California, Los Angeles nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

4.3 Attributions

A large number of people have worked on different aspects of the UCE approach, including creating the laboratory
methods to collect the data and the computational methods to analyze the data. Below, we have identified a list of
approximately which people/groups did what.

4.3.1 Maintainer/Author

* Brant Faircloth (brant at faircloth-lab dot org)

4.3.2 Contributed to the code

* Nick Crawford (ngcrawford at gmail dot com)
 Jonathan Chang (me at jonathanchang dot org)

e Mike Harvey (mharve9 at Isu dot edu)

* Tobias Hofmann (tobiashofmann at gmx dot net)

e Carl Oliveros (carl at ku dot edu)

4.3.3 Developed the UCE approach

¢ Brant Faircloth (LSU)
¢ Travis Glenn (UGA)

132 Chapter 4. Project info

http://faircloth-lab.org/
http://www.ngcrawford.com/
https://jonathanchang.org/research/
http://www.mharvey.org/
http://www.antonelli-lab.net/people.php
http://naturalhistory.ku.edu/ornithology/people/carl-oliveros

phyluce documentation, Release 1.7.0

4.3.4 Contributed to the UCE approach

* John McCormack (Occidental College)
* Robb Brumfield (LSU)

¢ Mike Alfaro (UCLA)

¢ Nick Crawford (Boston Univ.)

* Mike Harvey (LSU)

* Roger Nilsen (UGA)

¢ Brian Smith (LSU)

e Laurie Sorenson (LSU)

¢ Kevin Winker (U. Alaska - Fairbanks)

Contributed samples, funding, time, comments, etc.
Additionally, the following individuals have contributed samples, funding, laboratory work, computer code, documen-
tation, or all of the above:

¢ Mike Braun (Smithsonian)

* Noor White (Smithsonian)

¢ Ed Braun (U. Florida)

¢ Rebecca Kimball (U. Florida)

* David Ray (MsState)

* Sedn Brady (Smithsonian)

¢ Jesus Maldonado (Smithsonian)

¢ Jonathan Chang (UCLA)

4.4 Funding

4.4.1 Primary Sources
The National Science Foundation (NSF) and the Smithsonian Institution have supported a large portion of our work.
The specific programs and proposal identifiers are below:
* NSF DEB-0841729
* NSF DEB-0956069
e NSF DEB-1242241
* NSF DEB-1242260
NSF DEB-1242267

* Smithsonian Institution Consortium for Understanding and Sustaining a Biodiverse Planet

4.4. Funding 133

http://www.nsf.gov
http://www.mnh.si.edu/
http://www.nsf.gov/awardsearch/showAward?AWD_ID=0841729
http://www.nsf.gov/awardsearch/showAward?AWD_ID=0956069
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1242241
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1242260
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1242267
http://www.si.edu/Consortia/biodiversity

phyluce documentation, Release 1.7.0

4.4.2 Secondary Sources

We have also received funding for computational support from and/or materials from the following organizations:

e Amazon Web Services (Education grants to BCF, NGC, JEM, and TCG)

4.5

IDTDNA

Acknowledgements

We thank the following people, each of whom made contributions ensuring the success of our work. These include:

Claire Mancuso

Brant Peterson

Brent Pederson

Chris Moran

Ken Jones

Joe DeYoung

LSU Genomics Facility

UCLA Neuroscience Genomics Core

M. Reasel

134

Chapter 4. Project info

http://aws.amazon.com/
http://www.idtdna.com/site

Bibliography

[BCF2015]

[BCF2012]

[JEM2012]

Faircloth BC. 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioin-
formatics 32:786-788. doi: 10.1093/bioinformatics/btv646.

BC Faircloth, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. 2012. Ultracon-
served elements anchor thousands of genetic markers spanning multiple evolutionary timescales. System-
atic Biology 61: 717-726. doi:10.1093/sysbio/SYS004.

McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC. 2012. Ultraconserved
elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with
species tree analysis. Genome Res 26:746-754. doi:10.1101/gr.125864.111.

[NGC2012] Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC. 2012. More than

[BCF2013]

[JEM2013]

[BTS2013]

1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett
8:783-786. doi:10.1098/rsbl.2012.0331.

Faircloth BC, Sorenson L, Santini F, Alfaro ME. 2013. A phylogenomic perspective on the radiation
of ray-finned fishes based upon targeted sequencing of ultraconserved elements. PlosONE 8:¢65923.
doi:10.1371/journal.pone.0065923.

McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT. 2013. A phylogeny
of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PlosOne
8:€54848. doi:10.1371/journal.pone.0054848.

BT Smith, MG Harvey, BC Faircloth, TC Glenn, RT Brumfield. 2013. Target capture and massively
parallel sequencing of ultraconserved elements (UCEs) for comparative studies at shallow evolutionary
time scales. Syst Biol 63:83-95. doi:10.1093/sysbio/syt061.

[MGH2014] Sequence capture versus restriction site associated dna sequencing for phylogeography. MG Harvey, BT

[GB2004]

[AS2004]

[ED2005]

Smith, TC Glenn, BC Faircloth, RT Brumfield. arXiv:1312.6439.

Bejerano G, Pheasant M, Makunin I, Stephen S, Kent W1J, et al. (2004) Ultraconserved elements in the
human genome. Science 304: 1321-1325. doi:10.1126/science.1098119.

Sandelin A, Bailey P, Bruce S, Engstrom PG, Klos JM, et al. (2004) Arrays of ultraconserved non-
coding regions span the loci of key developmental genes in vertebrate genomes. BMC Genomics 5: 99.
doi:10.1186/1471-2164-5-99.

Dermitzakis ET, Reymond A, Antonarakis SE (2005) Opinion: Conserved non-genic sequences — an
unexpected feature of mammalian genomes. Nat Rev Genet 6:151-157. doi:10.1038/nrg1527.

135

http://doi.org/10.1093/bioinformatics/btv646
http://doi.org/10.1093/sysbio/SYS004
http://doi.org/10.1101/gr.125864.111
http://doi.org/10.1098/rsbl.2012.0331
http://doi.org/10.1371/journal.pone.0065923
http://doi.org/10.1371/journal.pone.0054848
http://doi.org/10.1093/sysbio/syt061
http://arxiv.org/abs/1312.6439

phyluce documentation, Release 1.7.0

[AS2005] Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) Evolutionarily conserved elements
in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034—1050. doi:10.1101/gr.3715005.

[AW2005] Woolfe A, Goodson M, Goode D, Snell P, McEwen G, et al. (2005) Highly conserved
non-coding sequences are associated with vertebrate development. PLoS Biol 3:116-130.
doi:10.1371/journal.pbio.0030007.

[LP2006] Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, et al. (2006) In vivo enhancer analysis
of human conserved non-coding sequences. Nature 444: 499-502. doi:10.1038/nature05295.

[NA2007] Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, et al. (2007) Deletion of Ultraconserved Elements Yields
Viable Mice. PLoS Biol 5: €234. doi:10.1371/journal.pbio.0050234.

[WM2007] Miller W, Rosenbloom K, Hardison RC, Hou M, Taylor J, et al. (2007) 28-way vertebrate alignment and
conservation track in the UCSC Genome Browser. Genome Res 17: 1797-1808. doi:10.1101/gr.6761107.

[AG2009] Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, et al. (2009) Solution hybrid selection
with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology 27:
182-189. doi:10.1038/nbt.1523.

[BB2010] Blumenstiel B, Cibulskis K, Fisher S, DeFelice M, Barry A, et al. (2010) Targeted exon
sequencing by in-solution hybrid selection. Curr Protoc Hum Genet Chapter 18: Unitl8.4.
doi:10.1002/0471142905.hg1804s66.

136 Bibliography

	Contributions
	Issues
	Guide
	Purpose
	Longer-term goals (v2.0.0+ and beyond)
	Who wrote this?
	How do I report bugs?

	Installation
	Install Process
	phyluce configuration
	Other useful tools

	Phyluce Tutorials
	Tutorial I: UCE Phylogenomics
	Tutorial II: Phasing UCE data
	Tutorial III: Harvesting UCE Loci From Genomes
	Tutorial IV: Identifying UCE Loci and Designing Baits To Target Them

	Phyluce in Daily Use
	Quality Control
	Assembly
	UCE Processing for Phylogenomics
	Workflows
	List of Phyluce Programs

	Project info
	Citing
	References
	Other UCE References

	License
	Documentation
	Software

	Attributions
	Maintainer/Author
	Contributed to the code
	Developed the UCE approach
	Contributed to the UCE approach

	Funding
	Primary Sources
	Secondary Sources

	Acknowledgements

	Bibliography

